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SPARSE PHASE UNWRAPPING

CROSS REFERENCE TO OTHER
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 16/751,161, entitled SPARSE PHASE
UNWRAPPING filed Jan. 23, 2020, which claims priority to
U.S. Provisional Patent Application No. 62/796,489 entitled
SPARSE PHASE UNWRAPPING USING NONCONVEX
CONTINUOUS OPTIMIZATION filed Jan. 24, 2019 and
also claims priority to U.S. Provisional Patent Application
No. 62/828,183 entitled SPARSE PHASE UNWRAPPING
USING NONCONVEX CONTINUOUS OPTIMIZATION
filed Apr. 2, 2019 all of which is incorporated herein by
reference for all purposes.

BACKGROUND OF THE INVENTION

A variety of applications use the phase of an electromag-
netic wave to derive useful information. One example is
interferometric synthetic aperture radar (InSAR). Phase is
often specified as an angle in radians, making 2πequivalent
to one wavelength. The relative phase corresponds to the
measurement not being able to distinguish between a phase
of 2π and a phase of 0. The measurement identifies a point
on a circle without knowing how many times the phase has
gone around the circle. Unfortunately, in order to extract
scientific value from the measurement, the phase typically
needs to be unwrapped, which is nontrivial. Accordingly,
techniques for efficiently unwrapping phase are desirable.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the invention are disclosed in the
following detailed description and the accompanying draw-
ings.

FIG. 1 shows NASA/USGS Landsat and MODIS satel-
lites and sensors providing data that can be processed using
embodiments of techniques described herein.

FIG. 2 shows the growth of Landsat and MODIS data
volume over time.

FIG. 3A shows bandwidth and latency for an example
Google Compute Engine node.

FIG. 3B shows a comparison of a 2003-era Beowulf
cluster, Cray XE6 node, and 2015 Cloud performance.

FIG. 3C illustrates a brief summary of example comput-
ing costs.

FIG. 4 illustrates a comparison between supercomputer
architecture and cloud computing.

FIG. 5 illustrates a comparison of encode times for the
OpenJPEG and Kakadu libraries for a 3-band 12-bit Landsat
8 image.

FIG. 6 illustrates an example of rate-distortion perfor-
mance for Landsat imagery.

FIG. 7 depicts progress of an example imagery processing
job.

FIG. 8 illustrates the number of nodes involved for each
phase of an example imagery processing job.

FIG. 9 depicts output from the Google Developer Console
showing network bandwidth in and out of compute nodes
during an hour slice.

FIGS. 10A-10C illustrate processed tiles.
FIG. 11 depicts an illustration of the United States, as

observed from satellite.

FIG. 12 depicts an example environment for processing
and analyzing data in accordance with techniques described
herein.

FIG. 13 depicts an example of pseudocode for ingesting
data.

FIG. 14 depicts an example of pseudocode for prepro-
cessing data.

FIG. 15A illustrates an example portion of the Earth as
viewed from above (e.g., by a satellite).

FIG. 15B illustrates an example portion of the Earth as
viewed from the side.

FIG. 16 illustrates a set of NDVI values for a given pixel
in a sixteen day period.

FIG. 17 illustrates an example of a process for creating a
composite image.

FIG. 18 illustrates an example of a process for creating a
boundary map.

FIG. 19A depicts a portion of a Landsat 7 image.
FIG. 19B depicts a gradient magnitude image.
FIG. 20 depicts a gradient count image, a presence count

image, and a gradient presence image.
FIG. 21 depicts gradient presence images.
FIG. 22 depicts gradient presence images.
FIG. 23 depicts boundary maps.
FIG. 24 illustrates a three-dimensional representation of

how the spectral signatures of two different crops change
over time during a typical growing season.

FIGS. 25A and 25B illustrate example processes for
enhancing a classification using a boundary map.

FIG. 26 depicts various fields in Iowa.
FIG. 27A illustrates an example of a portion of land

classified without use of a boundary map.
FIG. 27B illustrates an example of a boundary map.
FIG. 27C illustrates an example result of providing the

time series used to produce a classification map, and a
boundary map, to a classifier.

FIG. 28 illustrates a three-dimensional representation of
how the spectral signatures of two different crops change
over time during a typical growing season.

FIG. 29 illustrates an observation of a particular portion
of Iowa.

FIG. 30 is a corner plot of every pixel in the image shown
in FIG. 29.

FIG. 31 illustrates an example of a process for refining a
classification.

FIG. 32 is a corner plot of pixels after one iteration of a
portion of process 3100.

FIG. 33 is a corner plot of pixels after a second iteration
of a portion of process 3100.

FIG. 34 illustrates the speed with which convergence
occurs when process 3100 is performed using the scene
depicted in FIG. 29.

FIG. 35A depicts a Landsat 7 image.
FIG. 35B depicts a boundary map.
FIG. 35C illustrates a result of providing the image shown

in FIG. 35A and the boundary map shown in FIG. 35B as
input to process 3700.

FIG. 36A depicts a portion of a MODIS image.
FIG. 36B depicts a boundary map.
FIG. 36C illustrates a result of providing the image shown

in FIG. 36A and the boundary map shown in FIG. 36B as
input to process 3700.

FIG. 37 illustrates an embodiment of a process for
enhancing an image using a boundary map.

FIG. 38A shows an example of a processed SENTINEL-
1A image.

FIG. 38B shows a zoom into FIG. 38A.
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FIG. 39 illustrates an example of a boundary map.
FIG. 40 illustrates an embodiment of a process for

enhancing an image using a boundary map.
FIG. 41A depicts a result of regularizing the pixels in FIG.

38B using a field-wise median value.
FIG. 41B depicts a result of regularizing the pixels in FIG.

38B using a field-wise mean of the logarithm of the pixel
values.

FIG. 42A illustrates an example result of denoising FIG.
38B.

FIG. 42B illustrates an example result of denoising FIG.
38B.

FIG. 43A illustrates an example result of denoising FIG.
38B.

FIG. 43B illustrates an example result of denoising FIG.
38B.

FIG. 44A illustrates an example result of denoising FIG.
38B.

FIG. 44B illustrates an example result of denoising FIG.
38B.

FIG. 45A illustrates an example result of denoising FIG.
38B.

FIG. 45B illustrates an example result of denoising FIG.
38B.

FIG. 46A illustrates an example of phase from a single
SAR collection.

FIG. 46B illustrates the difference in phase from two SAR
collections.

FIG. 46C illustrates relative phase after correcting for
orbital offset.

FIG. 46D illustrates relative phase after correcting for
orbital offset.

FIG. 47A illustrates an example interferogram from a pair
of collections made during descending passes over the
Kilauea volcano.

FIG. 47B illustrates an example interferogram from a pair
of collections made during ascending passes over the
Kilauea volcano.

FIG. 48 illustrates coherence for the collections used to
form the interferogram depicted in FIG. 47A.

FIG. 49 illustrates example code for implementing phase
unwrapping.

FIG. 50A illustrates a wrapped interferogram phase.
FIG. 50B illustrates interferogram coherence.
FIG. 51 illustrates two phase unwrapping results.
FIG. 52 illustrates the difference between the unwrapped

and wrapped phase.
FIG. 53 illustrates an example of an interferogram and

unwrapped phase for which SNAFU does not converge after
a period of time.

FIGS. 54A and 54B depict a measure of the coherence and
phase of an interferogram, respectively.

FIGS. 55A and 55B depict a measure of the coherence and
phase of an interferogram, respectively.

FIGS. 56A and 56B depict a measure of the coherence and
phase of an interferogram, respectively.

FIG. 57 illustrates an example of a process for generating
an unwrapped interferogram.

FIG. 58 depicts an example control script for managing
portions of process 5700.

DETAILED DESCRIPTION

The invention can be implemented in numerous ways,
including as a process; an apparatus; a system; a composi-
tion of matter; a computer program product embodied on a
computer readable storage medium; and/or a processor, such

as a processor configured to execute instructions stored on
and/or provided by a memory coupled to the processor. In
this specification, these implementations, or any other form
that the invention may take, may be referred to as tech-
niques. In general, the order of the steps of disclosed
processes may be altered within the scope of the invention.
Unless stated otherwise, a component such as a processor or
a memory described as being configured to perform a task
may be implemented as a general component that is tem-
porarily configured to perform the task at a given time or a
specific component that is manufactured to perform the task.
As used herein, the term ‘processor’ refers to one or more
devices, circuits, and/or processing cores configured to
process data, such as computer program instructions.

A detailed description of one or more embodiments of the
invention is provided below along with accompanying fig-
ures that illustrate the principles of the invention. The
invention is described in connection with such embodi-
ments, but the invention is not limited to any embodiment.
The scope of the invention is limited only by the claims and
the invention encompasses numerous alternatives, modifi-
cations and equivalents. Numerous specific details are set
forth in the following description in order to provide a
thorough understanding of the invention. These details are
provided for the purpose of example and the invention may
be practiced according to the claims without some or all of
these specific details. For the purpose of clarity, technical
material that is known in the technical fields related to the
invention has not been described in detail so that the
invention is not unnecessarily obscured.

Techniques described herein can be used to process and
analyze data such as multi-decadal observations of the Earth
by constellations of satellites. For example, described herein
are techniques for operating on over a petabyte (8×1015 bits)
of compressed raw data from 2.8 quadrillion pixels (2.8
petapixels) acquired by sources such as the U.S. Landsat and
MODIS Earth remote sensing programs over the past forty
years. As described herein, such data can be converted from
a raw form to a calibrated, georeferenced, and multi-reso-
lution tiled format suitable for further additional processing/
analysis, facilitating further space and time-domain analysis,
including fusion of the Landsat and MODIS (and other)
datasets, as applicable. The techniques described herein are
efficient—allowing, in various embodiments, for the pro-
cessing, in less than a day, on generally available resources,
over a petabyte of scientific data collected from the natural
world. The techniques described herein can be deployed
using commodity cloud computing resources (using a
“Cloud architecture”), but can also be deployed using other
architectures, including traditional high-performance com-
puting architectures, in various embodiments, as applicable.

I. Overview

A. Overview of Example Data Sources

The NASA/USGS Landsat program has routinely col-
lected approximately monthly snapshots of the world’s land
surface since 1972. The Landsat program has evolved over
its lifetime, with the eight Landsat satellites hosting a series
of moderate-resolution multispectral imaging systems, from
the Multispectral Scanner (MSS), to the Thematic Mapper
(TM) and Enhanced Thematic Mapper (ETM+), and most
recently the Operational Land Imager (OLI) and Thermal
Infrared Sensor (TIRS). FIG. 1 shows NASA/USGS Landsat
and MODIS satellites and sensors providing data that can be
processed using embodiments of techniques described
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herein. Landsat 6 failed on launch, and a failure in the
Landsat 7 scanline corrector (SLC) is indicated in region
102. Complementing the Landsat program is a range of
lower-spatial resolution systems optimized for daily global
imaging, of which the most widely used is the Moderate
Resolution Imaging Spectroradiometer (MODIS) instru-
ment on the NASA satellites EOS Terra (launched 1999) and
Aqua (launched 2002). Landsat and MODIS are two
examples of sources of observational data. Other sources can
also be processed/analyzed in addition to/instead of Landsat/
MODIS data in accordance with various embodiments. For
example, observational data collected from other constella-
tions (e.g., PlanetScope, RapidEye, Dove, SENTINEL-1,
and SENTINEL-2), as well as higher-resolution imagery
(e.g., collected via airplane/drones) can also be used in
accordance with embodiments of techniques described
herein.

FIG. 2 shows the growth of Landsat and MODIS data
volume over time. To be most useful (e.g., to the community
of researchers and policy makers), the Landsat and MODIS
datasets need to be available globally on data systems that
support high-bandwidth access, and the data itself needs to
be stored in a data format that supports scientific analysis
and is compatible with common visualization tools. At the
time of the Landsat 1 launch on Jul. 23, 1972, the fastest
computer in the world was the CDC 7600, capable of
approximately 10 Mflops. Each Landsat 1 MSS scene con-
sisted of 20 Mpixels (170 km×185 km image at 79 m ground
sample distance in 4 spectral bands). The long-term storage
options for these huge images involved magnetic tape and
conversion to large-format photographic film. Hundreds of
thousands of frames of photographic film remain in the
USGS Eros data center, and efforts were taken in the early
1990s to convert the film data from Landsat 1 through 5
MSS and TM observations back to a digital format.

Google Earth Engine and the Amazon-NASA Earth
Exchange (NEX) have placed historical (and are continuing
to place newly-collected) Landsat and MODIS data into
freely accessible storage in the cloud. Unfortunately, this
data is often provided to the public in a format which
requires more resources to store and process than necessary,
and can prevent some forms of analysis entirely. As one
example, bzip compressed tar files (often used to store such
imagery) prevent random access to the data within them.
Additionally, if answering a specific question requires
access to the entire time series of data within a relatively
small region (e.g., tens of kilometers), more than 1000 large
image files spanning 185 km would need to be decom-
pressed in their entirety, and then further spatially subdi-
vided in order to fit within the memory of a processing node.
However, if, as will be described in more detail below, the
data is provided in a multi-resolution tiled format, only the
data of interest needs to be accessed, reducing the cost and
complexity by a large factor.

B. Overview of Infrastructure

1. Hardware

A variety of infrastructural approaches can be used to
process data at a petabyte scale. One option is to purchase
hardware, and install and maintain one’s own computing
center. One drawback of this approach is that, where the
peak requirements are very large, but the typical workload is
much smaller, resources will often go wasted through idle-
ness. Further, this approach requires an appropriate knowl-
edge of how to design and provision the hardware and

software environment, possibly before having a complete
understanding of the resources required to solve the data
processing problem at hand. This solution also potentially
comes with a multi-year commitment, since there is not
much of a market for slightly used supercomputers.

A second option is to use shared supercomputing
resources (e.g., provided by one’s company, university, or
national supercomputing facility). There are hundreds of
supercomputing installations with more than 10,000 cores
that could potentially provide for the on-node processing of
the datasets described herein. Unfortunately, the associated
storage and network resources are not so readily available.
One major limitation to processing very large datasets using
traditional supercomputing hardware is the difficulty of
transferring the data to a parallel file system where it can be
processed. At typical supercomputing center transfer rates,
retrieving a petabyte from an archival storage location over
the Internet could take a month or more.

Another issue is how to store the data while it is being
collected. Parallel file systems commonly attached to super-
computers, such as Lustre and Panasas, have been designed
for high performance, and their high cost limits their utility
for long-term data storage. They are typically reserved for
temporary, scratch storage. Lower cost archival storage such
as magnetic tapes are available, but are not designed to
support the use case of staging a petabyte at a time onto a
parallel datastore. Yet another issue is how to perform
further analysis and/or distribute results after a large data
processing run has completed. Supercomputing centers typi-
cally do not provide a friendly environment for interactive
data analysis and visualization, and additional infrastructure
to provide web-enabled public or private access to large
amounts of processed data can run afoul of traditional
security models.

Instead of purchasing dedicated hardware to perform
calculations, and/or performing them at an existing super-
computing center, an alternate approach is to leverage public
cloud computing resources. Cloud computing represents a
further step in the commoditization of computational
resources, with associated benefits in agility, elasticity, and
reliability. One aspect of cloud computing is that its pay-
as-you-go model promotes transparency of resource costs,
and thus allows free-market economic feedback loops which
are largely suppressed in the traditional supercomputing
environment. In the following discussion reference is made
to Google Compute Engine, which is the Infrastructure as a
Service (IaaS) component of Google Cloud Platform. Other
platforms provided by other companies can also be used, and
the techniques adapted as applicable.

Google Compute Engine became generally available in
December 2013, and offers virtual machines using KVM as
the hypervisor. Benchmarks connecting its node perfor-
mance to a past Beowulf architecture and a recent HPC
architecture are depicted in FIGS. 3A and 3B. In particular,
FIG. 3A shows bandwidth and latency for a Google Com-
pute Engine node. Small message latency is approximately
85 microseconds, while large message bandwidth reaches 7
Gigabits/second. FIG. 3B shows a comparison of a 2003-era
Beowulf cluster Gordon Bell price/performance prize final-
ist to a Cray XE6 node and 2015 Cloud performance. The
top set of results is memory bandwidth measured in
Mbytes/s by the STREAM benchmark, the middle is from
the Class C NAS Parallel Benchmarks in Mop/s, and the last
line is Linpack Gflop/s. Beowulf results are per CPU on a
2.53 GHz Intel Pentium 4. Cloud results are per HW core on
a 16-core 2.3 GHz Intel Haswell node. Cray results are per
Bulldozer compute unit of a dual-socket XE6 node with 2
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AMD Interlagos model 6276 2.3 GHz CPUs (16 cores total).
The data indicates that performance per core has progressed
little in the past 12 years for un-tuned applications (between
factors of 1 and 8, with most of these benchmarks around a
factor of 3).

A brief summary of example computing costs is shown in
FIG. 3C. The values are derived from published Google
Cloud Platform pricing and example performance measure-
ments taken in April, 2015. The numbers represent rough
estimates, and substantial discounts can be obtained for
particular workloads. Commodity bandwidths and capaci-
ties have been converted to a cost per second per giga-unit
to facilitate total cost estimation. For example, storing one
petabyte (1 million gigabytes) for one year (31.5 million
seconds) in Cloud Storage costs $315,000. One dollar can
currently buy a minute of programming labor, deliver 8
Gigabytes to the Internet, store a gigabyte in DRAM for 1
week, or provide 1015 floating point operations.

Many lessons gleaned from the past decades of super-
computing remain relevant to cloud computing with a trans-
lation between architectural components (e.g., where
memory becomes a key-value store, and a CPU becomes the
entire compute node). Where efficiency on a “Big Iron”
supercomputer is most often dependent on dealing effec-
tively with the limited bandwidth available from main
memory, the equivalent limitation in the cloud is the network
connection between the processing nodes and data storage.
Techniques developed for “cache-friendly” algorithms to
increase data locality can often be adapted for use in cloud
architectures. An illustration of a comparison between
supercomputers and cloud computing is shown in FIG. 4.

For the remainder of the Specification, reference will
generally be made to various techniques being deployed
using cloud computing resources. However, traditional
standalone hardware can also be used, and the techniques
described herein adapted as applicable. FIG. 12 (described
in more detail below) depicts an example environment for
processing and analyzing data in accordance with techniques
described herein. As explained throughout the Specification,
platform 1202 (and/or various elements thereof) can be
implemented using traditional server hardware, and can also
be implemented using cloud computing resources. Various
elements of the environment shown in FIG. 12 are depicted
as individual units (e.g., ingestor 1208 and pre-processor
1210). It is to be understood that such elements need not be
implemented on a single node, but can also be implemented
across multiple nodes configured to cooperate to perform
tasks (e.g., leveraging various industry standard cloud com-
puting techniques, as well as various approaches described
herein). Further, whenever platform 1202 is described as
performing a task, a single component, a subset of compo-
nents, or all components of platform 1202 may cooperate to
perform the task. Similarly, whenever a component of
platform 1202 is described as performing a task, a subcom-
ponent may perform the task and/or the component may
perform the task in conjunction with other components.
Various logical components and/or features of platform 1202
may be omitted and the techniques described herein adapted
accordingly. Similarly, additional logical components/fea-
tures can be added to embodiments of platform 1202 as
applicable.

2. Software

The availability of useful, high-quality, and interoperable
software packages continually increases (e.g., as the knowl-
edge and effort of many software developers integrates over

time in a code base counted in hundreds of millions of lines).
The ecosystem that has developed around the collaborative
development of software is a remarkable example of how
the solution to a problem can be scaled across a large number
of people. A corollary to the observation that there is vastly
more high-quality open source software available now than
there was in the past, is that much of the complexity of
managing software has moved from writing one’s own code
to interfacing one’s code with software written by others.

Python offers a good compromise between rapid code
development and high performance. Accordingly, in various
embodiments, various pipelines (and/or components
thereof) are predominantly written in Python, leveraging
Numpy for numerical array operations. Cython is used as a
glue to interface to other software libraries, and the Geo-
spatial Data Abstraction Library (GDAL) is also used. The
code is revision controlled with Git, which is also used as the
vehicle for code deployment to worker nodes. Other lan-
guages/packages/etc. can also be used in accordance with
various embodiments of the techniques described herein. As
one example, a Landsat metadata file parser from the Land-
sat ecosystem disturbance adaptive processing system
(LEDAPS) can be written in the C programming language,
comprising approximately 500 lines of code, supporting
either the old or new Landsat metadata format, depending on
the version used. A Python metadata file parser in accor-
dance with embodiments of the techniques described herein
requires less than 40 lines, and can support both old and new
Landsat metadata formats with the addition of an 80 line
translation dictionary. Landsat metadata information can be
propagated into an XML container within JPEG 2000 output
files, providing a self-documenting provenance for the data
the processing pipeline produces.

Various approaches can be used to reduce the cost of
resources involved in the various kinds of processing and
analysis described herein (examples of which costs are
illustrated n FIG. 3C). For example, memory usage can be
reduced to allow for execution on the smallest memory (and
least expensive per core) Google Compute Engine nodes,
which contain somewhat less than 2 GBytes of memory per
hardware core, and use no conventional disk storage on the
compute nodes at all (beyond the minimum 10 GB partition
required to boot the system), working entirely in memory or
from the Linux tmpfs RAM disk. As another example,
intermediate writes to the local file system can be reduced,
instead going from memory buffer to memory buffer
between application libraries. As a specific example, rather
than copying a bzipped Landsat image tar file from Google
Cloud Storage to local storage and then decompressing and
reading the file into memory, the data can be streamed
directly into memory using a Python tarfile module reading
from a gsutil cat pipe. The data in memory can then be
passed directly to GDAL via the gdal.FileFromMemBuffer
interface.

3. Initial Dataset—Landsat/MODIS

One example input dataset for use in conjunction with
techniques described herein comprises 915.52×1012 bytes of
Landsat data in 5,693,003 bzip compressed GeoTIFF files
(available at gs://earthengine-public/), and 101.83×1012

bytes of MODIS Level 1B (2QKM) band 1 (red) and 2 (near
infrared) data in 613,320 sz compressed Hierarchical Data
Format (HDF4) files (e.g., collected from the NASA ftp site
(1204) and stored in Google Cloud Storage (1212)), for a
total of 1017.35×1012 bytes and 6,306,323 files. The oldest
image was collected Jul. 25, 1972, and (in this example data
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set) the recent image was collected on 2015-04-13 at 06:10:
04Z. All of the input data is publicly available.

In various embodiments, the processing stages for each
Landsat image in the dataset include: retrieving the image
from Google Cloud Storage, uncompressing the image,
parsing the metadata, identifying the bounding rectangle that
contains valid data, cleaning the edges of the image, con-
verting the raw pixel information into meaningful units (e.g.,
calibrated top of atmosphere reflectance using the appropri-
ate constants for each satellite and accounting for solar
distance and zenith angle), cutting each image into appro-
priately sized pieces using a consistent equal-area world-
wide tiling of the sphere, performing any necessary coordi-
nate transformations, compressing the data into a JPEG
2000 format (or another appropriate format), and storing the
result back into Cloud Storage.

4. JPEG 2000 Image Coding

Aspects of JPEG 2000 include:
*Rate-distortion performance that is somewhat superior

to that of traditional JPEG at high bit-rates (i.e., low com-
pression ratios) and substantially superior at low bit-rates
(i.e., high compression ratios).

*Much greater flexibility in terms of the types of images
that can be coded, including single and multi-band images,
and bit-depths between 1 and 32 bits per band (e.g., as
compared to traditional JPEG).

*Support for both lossless and lossy compression.
*A scalable codestream that can be truncated to obtain a

lower bitrate representation of the image of similar quality
to that which would have been obtained if the image had
been coded to target that reduced bit-rate. The codestream
can be ordered for various forms of scalability, giving
priority, for example, to either resolution (a high-fidelity
low-resolution representation is obtained first) or fidelity (a
low-fidelity full-resolution representation is obtained first).

The above features are all provided by the baseline,
defined in “Part 1” of the standard, which also defines a
standard file format for the codestream, referred to as JP2.
Further flexibility, such as support for user-defined wavelet
transforms and inter-band transforms, is provided by “Part
2” extensions to the standard, which also defines the more
flexible JPX file format.

5. Generations of Landsat Imagery: MSS, TM,
ETM+, AND OLI

Landsat images comprise 6 or 7 spectral channels, a
higher-resolution panchromatic channel (only available in
Landsat 7 ETM+ and Landsat 8 OLI), and one or more mask
images. Example ways to combine groups of them are in the
following set of JPEG 2000 encoded images in JP2 file
format:

*a three-band image comprising the spectral channels
with the closest correspondence to visible red, green, and
blue bands (lossy coding),

*a three-band image comprising the near infrared (NIR)
and short wave infrared (SWIR) bands (lossy coding),

*a single thermal infrared (TIR) band (lossy coding),
*a single high-resolution panchromatic (PAN) band for

ETM+ and OLI (lossy coding),
*a single band 1-bit image representing the data validity

mask (lossless coding), and
*a single band 8-bit image representing the most impor-

tant bit-planes in the Landsat 8 Quality Assessment Band
(lossless coding).

The above layout does not fully exploit all of the flex-
ibility of the JPEG 2000 standard, which would allow all
bands to be included within a single JPX file, or all multi-
spectral bands to be included as multiple components within
the same JP2 file. Example reasons for this choice are (i) the
optimum layout is strongly influenced by the optimal chunk
size for access while minimizing costs for cloud file opera-
tions, and (ii) a JP2 file format was preferred over the more
flexible JPX format due to the much wider support by
libraries for decoding JPEG 2000 format images. In other
embodiments, other layouts can also be used.

JPEG 2000 performance in reversible coding of bitplanes
is inferior to that of a coding technique, such as JPEG-LS,
specifically designed for this type of content. However, to
avoid the complexity of using multiple coding standards, in
various embodiments, JPEG 2000 is also used for bands of
this type. A substantial performance improvement can be
obtained, at the expense of losing resolution scalability, by
effectively disabling the wavelet transform by setting the
number of transform level to zero.

6. JPEG 2000 Parameters

A variety of libraries can be used for manipulating image
data. For example, the commercial Kakadu library can be
used, as can an open-source option such as OpenJPEG.
Using the Kakadu library offers an advantage in encoding
speed, as illustrated in FIG. 5, which depicts a comparison
of example encode times for the OpenJPEG and Kakadu
libraries for a 3-band 12-bit Landsat 8 image. Reported
times are averages over 10 runs. With respect to the data
depicted in FIG. 5, Kakadu multi-threading was disabled to
do a fair comparison for the environment, to account for the
use of parallelism on a node at the task level.

One application of the imagery described herein is as an
input to a classifier. In such a scenario, quality measures
targeting perfectibility of distortion to a human viewer are
generally not directly relevant. A compression ratio can be
based on more meaningful criteria, e.g., by performing a
classification experiment on processed JP2 imagery over a
wide range of compression ratios. As one example, suppose
for each ratio, thirteen 2048×2048 frames for the same
thirteen 2048×2048 frames for the same spatial location
(e.g., a region in Kansas) are selected from different times in
2011, and 1800 rows of pixels are used in each of the six
spectral bands as training data, with the remaining 248 rows
of pixels as testing data. The ground truth in this example is
whether each pixel location is identified by the United States
Department of Agriculture (USDA) CropScape Data Layer
(CDL) as containing wheat. The 78-dimensional training
inputs for each of the 3,686,400 training pixels can be input
into an artificial neural network comprising three fully-
connected layers, using the open source Caffe library. In this
example, suppose the classification performance varies from
87.52% for uncompressed data to 87.13% for the most
compressed imagery. A compression ratio can be selected
such that it is sufficiently high to give a substantial reduction
in storage costs, but for which image structure (e.g., edges)
is just perceptible in the difference image between original
and decoded images.

An example of rate-distortion performance for Landsat
imagery is presented in FIG. 6. In particular, FIG. 6 depicts
the JPEG 2000 rate-distortion performance for a single-band
panchromatic image and a 3-band multi-spectral (RGB)
image from the same Landsat 8 tile. The coding rate is
measured in terms of compression ratio, and distortion is
measured in terms of PSNR. In various embodiments, the
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desired level of compression is specified to the Kakadu
encoder using the rate-allocation slope rather than a target
bitrate (which is less robust to changes with image content
in delivering a consistent reconstruction distortion).

7. Visualization in the Browser

Being able to quickly view and interrogate a given image
or montage of images can be helpful for verification and
validation of a processing pipeline. Unfortunately, even
though the use of JPEG 2000 enables superior performance
in terms of compression ratios and multi-resolution repre-
sentation of imagery, modern web browsers such as Google
Chrome, Mozilla Firefox, and Apple Safari do not natively
support the format. Accordingly, output JP2 files that could
otherwise be viewable directly in the Google Developers’
Console Storage Browser must first be downloaded to a
local workstation and viewed using an image viewer capable
of parsing JP2 files. The situation is aggravated by the files
having up to 10 different components, requiring the usage of
layout-specific visualization scripts. One solution is to use a
Google Chrome Javascript-based extension to view images
directly from within the web browser. While an entire
JP2-capable parser can be purely in Javascript, in various
embodiments, the Emscripten LLVM compiler toolchain is
used to compile the C99 OpenJPEG 2.1.0 library to LLVM
bytecode and translate the result into optimized Javascript.
The base library can be augmented by implementing addi-
tional C library functions that are used to specify additional
decoding parameters and yield direct access to image com-
ponent data without first writing to a temporary PNG or
RAW image. An HTML5 Canvas object can then be filled
with the data array, providing scaling and gamma correction
functionality through a simple web GUI. This moves the
image inspection procedure directly to wherever the data
resides (in terms of its location on a website). Progressive
decoding of the bytestream can be performed as it arrives
from the server, allowing for a seamless integration into
traditional websites.

8. Example System and Environment—Google
Compute Engine

As explained above, in various embodiments, the data
processing and analysis techniques described herein are
implemented using commercially available public cloud
resources with an on-demand cost model. These include
Google Cloud Platform resources, such as Compute Engine
and Cloud Storage, but other platform resources by other
vendors can also be used, as applicable (e.g., as offered by
Amazon). Cloud vendors such as Google divide physical
hardware into virtual resources to divide workloads into
isolated environments, which allows customers to use com-
pute capacity with an on-demand cost model. Once the task
is complete, the customer can deprovision the system,
ending their costs. The virtual infrastructure and its under-
lying physical resources can then be returned to the available
resource pool for the next customer to use. Construction and
management of data centers, purchasing of hardware, utili-
ties, and staffing are all removed for the task of building a
large distributed system. This allows for focus on the actual
problem being solved. Google currently has four geographic
availability zones in its us-central 1 region, any/all of which
are used in various computations described herein. Geo-
graphical diversity creates design options for robust failover
and scaling.

Google Compute Engine allows for development teams to
specify virtual hardware such as CPU, RAM, SSDs, net-
work, security, etc., along with software such as an operating
system, custom software, and dependencies. This flexibility
allows the costs and benefits of different hardware to be
factored into the software engineering decision process, as a
tradeoff against the cost of optimizing the code to work with
lower priced virtual hardware. In various embodiments,
worker nodes comprise four virtual machine CPU (vCPU)
models, based on what is available in the four geographic
zones. Examples are as follows:

Zone Virtual Machine CPU Hardware

us-central1-a highcpu-16vCPU Intel Sandy Bridge 2.6 GHz Xeon E5
us-central1-b highcpu-16vCPU Intel Haswell 2.3 GHz E5 v3
us-central1-c highcpu-32vCPU Intel Haswell 2.3 GHz E5 v3
us-central1-f highcpu-32vCPU Intel Ivy Bridge 2.5 GHz E5 v2

Other virtual hardware specifications such as RAM, SSD,
and network are identical across zones. Software is identical
with the exception of worker processes corresponding to the
vCPUs available. Zone variations (primarily 16 and 32
vCPU instances) necessitate multiple VM templates. Data-
center regions also allow the specification of templates
inside a group, such as the specification of the number of
VMs to be created, and auto-scaling of the group based on
factors such as network traffic or CPU load.

9. Example Software Deployment and
Configuration

In various embodiments, software deployment and con-
figuration is accomplished with two techniques: bash scripts
and Linux containers (e.g., Docker). VM templates allow for
a custom script to be specified and executed post startup.
With the bash script technique, the code is pulled from a
private Github repository along with dependencies, and
configuration files deploy the code onto the virtual machines
and start the worker processes. In the second approach, a
pre-built Docker container that contains source code, depen-
dencies, and configurations built inside the container is
deployed onto the VM and the container is executed in
daemon mode. Docker containers provide an API around
several Linux kernel features (libvirt, LXC, systemd, and
libcontainer) to create an isolation mechanism from the host
OS while utilizing the existing Linux kernel. Traditional
virtual machines fully isolate operating systems on top of a
hypervisor. Docker containers also use a copy-on-write
layered file system approach where identical layers need not
be duplicated, creating considerably smaller storage require-
ments than traditional virtual machines. Because the con-
tainer is leveraging the existing kernel’s CPU, memory, and
network, additional performance overhead can be minimal.
Containers can be executed on both virtual machines and
bare metal hardware, which provides an efficient mechanism
to move configured, functional, versioned, compute capa-
bilities to where the data resides, which often could be a
different cloud vendor, private datacenter, or collaborator’s
laptop. Just as source code can be branched and versioned
inside modern source code repositories such as Git, pre-built
containers can be versioned and branched in container
repositories at a fraction of the size of versioning virtual
machines, since only the changes in the layered file system
are differentiated. In an example deployment, containers are
built with all required dependencies, configurations, and
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source code from GitHub, and then stored in a private
Google Container Registry located inside a Google Cloud
Storage bucket. This allows for the latest container to be
pulled down and executed in daemon mode on startup in a
consistent manner across the cluster. Containers also provide
a reproducible archival mechanism for others to later
execute code to attempt to duplicate results with minimal
effort. The time from the initial virtual machine creation
command to the worker node starting tasks from the task
queue is two minutes in an example run.

The Landsat dataset is stored inside Google Cloud Stor-
age as a publicly available dataset, persistent and accessible
from all four us-central zones. As an alternative to using a
large NFS for all worker nodes to write results, Google
Cloud Storage buckets can be used as a persistent, common
datastore across all nodes. As a further benefit, this data is
also available in other geographical zones, enhancing avail-
ability and tolerance to hardware failures.

To manage the creation of asynchronous tasks for pro-
cessing millions of scenes across the worker nodes, an
asynchronous task queue approach (e.g., the Python Celery
library) is used in some embodiments. Celery’s API allows
multiple asynchronous job queues to be created, the list of
tasks and their parameters to be managed, and for their
insertion into a pluggable backend key-value pair store (e.g.,
Redis). As worker nodes are provisioned and start, they
connect to the Celery broker to receive processing tasks in
the queue. To optimize performance, Redis can be config-
ured to keep the queue in memory.

10. Scalability and Performance—Example
Execution

In one example execution (e.g., of the tiling process
described in more detail below), processing of a petabyte of
satellite imagery begins at 02:15 UTC, when 250 nodes in
zone us-central 1-f are started, processing Landsat TM
images. Additional compute instances are then created
across zones a, b, c, and f, accounting for approximately
15,000 physical compute cores. At 11:34 UTC, nodes run-
ning the MODIS processing pipeline are started, and an
equivalent number of Landsat nodes are shut down. At 15:45
UTC, a list of tasks which have not completed and have not
been automatically re-tried by the task manager is resub-
mitted. By 16:15 UTC, the bulk of the Landsat tasks are
complete, and the remaining Landsat MSS tasks are added.
At 17:11 UTC, the MODIS processing completes, and at
17:41 UTC on April 16 all tasks have completed.

FIG. 7 depicts progress of the aforementioned processing
over 15.5 hours. The petabyte of input data is read from the
distributed Google Cloud Storage system at an average rate
of 18.1 Gbytes/sec. After decompression, this represents
55.2 Gbytes/sec into processor memory. The peak input
network bandwidth exceeds 25 Gbytes/sec (200 gigabits/
sec). The output bandwidth back to Google Cloud Storage
averages about 4.5 Gbytes/sec, written to over 185 million
individual files.

The number of nodes involved for each phase of the above
example execution is shown in FIG. 8 (counting one pub-
lisher and one subscriber on each node, with a mix of 8-core
and 16-core machines). In particular, the number of pub-
lishers and subscribers during the calculation derived from
the Redis system used as a backend by the Celery task
manager is shown. Line 802 shows Landsat tasks, and line
804 shows MODIS tasks.

FIG. 9 depicts output from the Google Developer Console
showing network bandwidth in and out of compute nodes at

hours 3-4 of the process, showing typical bandwidths above
16 Gbytes/sec, with the peak at nearly 23 Gbytes/sec.

FIGS. 10A-10C show examples of processed tiles of the
Austin, Tex. area. FIG. 10A depicts March 1973 (Landsat 1
MSS), FIG. 10B depicts September 1994 (Landsat 5 TM,
FIG. 10B), and FIG. 10C depicts March 2015 (Landsat 8
OLI, FIG. 10C), respectively. The tiles are 2048×2048
pixels, and are calibrated and georeferenced. The Landsat 1
image (FIG. 10A) is a false-color image (RGB display
channels mapped to near IR, visible red, visible green), due
to the MSS sensor lacking a visible blue band. All three
panels are composites of four processed tiles, where each
panel is formed from tiles collected over several days,
showing the consistency of the processing across Landsat
scenes and between sensors. Region 1002 in FIG. 10A is a
region where no data was available in that Landsat 1 MSS
observation. Changes in the extent of urbanization surround-
ing Austin are clearly visible from panel to panel, as is a
significant change in Buchanan Lake between FIG. 10B
(region 1022) and FIG. 10C (region 1042).

II. Ingestion and Pre-Processing

FIG. 11 depicts an illustration of the United States, as
observed from a satellite. In particular, FIG. 11 illustrates a
granule (1104) of data—five minutes of orbit along a swath
(1102). The path of the spacecraft is down through the center
of the swath.

A. Map Projections

Two common map projections which represent the spheri-
cal surface of the Earth as a regular grid are the Web
Mercator projection and the Universal Transverse Mercator
(UTM) projection. A single image of the Earth with pixel
scales less than about 10 km is too large to process effi-
ciently, so the map must be “tiled,” or split into pieces which
can be processed independently.

The Web Mercator projection can readily be tiled, because
the image dimensions are precisely a power of two in both
coordinates. The level of the decomposition divides the
world into 4n level pieces. An appropriate level can be
chosen to satisfy various constraints, mainly, the number of
time slices of a given tile that can fit into processor memory
at one time. Web Mercator is suitable for simple map
interfaces, but is problematic for applications beyond simple
analysis because the pixel areas are not equal: as a pixel
becomes farther from the equator, it represents a smaller and
smaller area on the surface of the Earth.

The UTM projection is not as simple. UTM first splits the
world into 60 zones, and within each zone pixels are split
into nearly equal areas referenced by their “x” or “Easting”
coordinate and their “y” or “Northing” coordinate. All UTM
distances are measured in meters. The number of pixels
which span a zone in the East-West direction depends on the
distance from the equator.

For the MODIS sensor carried on the Aqua and Terra
satellites, sensor values come as a logically rectangular grid
of latitude/longitude co-ordinates (a swath), but projected on
to the surface the sample points are not on a regular grid
(points become farther apart towards the edges of the swath).
For other sensors, the image values are delivered in UTM
coordinates. A shared, common coordinate reference system
can be used to further the most efficient and accurate
processing of multiple datasets. Most of the input data is
delivered in UTM coordinates, and operations to interpolate
pixels to a different map projection or resolution can affect
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the data quality and require additional computational
resources. Accordingly, in various embodiments, UTM is
used as a common map projection. The tiling techniques
described herein can also be adapted for use with other
projections, as applicable.

B. UTM Tiling Parameters

UTM tiling (e.g., as used by embodiments of platform
1202) can be described by a number of parameters. It is
applied to each of the 60 UTM zones with identical param-
eters, with the zone designated by z. A similar construction
can be applied to the polar UPS projection. The parameters
are as follows:

*z: the UTM zone,
*x0y0: the origin of the tiling system,
*xnyn: the number of pixels in the tile,
*xbyb: the border size of the tile,
*r: the spatial resolution of the pixel.
Each pixel can be located by its spatial global index offset

from the origin of the tiling system gigj, or its index i, j,
within a specific tile titj (also referred to as column and row).

An example size for tile images (e.g., given current
computer architectures and memory storage capacities) xnyn

is approximately 4096×4096 pixels. Since a UTM zone is 6
degrees across, that represents 668 km at the equator. For
pixel scales xr larger than approximately 200 meters, a single
tile will cover the east-west extent of a UTM zone. For
smaller pixel scales, multiple tiles are required. For
example, for r=10 m resolution (e.g., SENTINEL-2), sev-
enteen 4096 pixel wide tiles would be required

668 km *
1000 m

10 m

4096
.

In the y-dimension, the distance from the equator to the
pole is near 10000 km, so the number of 4096×4096 tiles to
span that distance is approximately 10 for a 250 m pixel tile,
and 244 for a 10 m tile. The southern hemisphere can be
handled with a similar number of tiles using a negative index
referenced from the equator, or referenced by their northing
coordinate from the south pole using the southern “S”
designator for the zone.

There are several potential choices for the origin of the
tiling. The first uses the native UTM 0,0 as the origin, which
is at the intersection of the false easting of the zone (500 km)
and the equator. One drawback of this choice is that the tiles
are not symmetric within a zone. Another choice is to use the
intersection of the central meridian of the zone with the
equator, which is located at UTM x0y0=500000,0.

The border size represents overlap with adjacent tiles,
which allows the reduction of “edge” effects for processing
which requires neighboring pixels. One choice is to use
some fraction of the tile size to reduce duplicate storage. For
a 4096×4096 tile, an example choice is some power of 2
between 32 and 256.

There are also various choices for the optimal pixel
resolution “r.” One approach is to accommodate as many
sensors as possible using powers of two of a fundamental
resolution. Examples of such tilings are as follows:

*r=5 m accommodates RapidEye and PlanetScope (native
5 m), and SENTINEL-2 (native 10 m/20 m).

*r=15 m accommodates pan-sharpened Landsat 7/8 (15
m), Landsat 5/7/8 (native 30 m), and MODIS (240 m).

For high-resolution sensors (e.g., NAIP aerial photogra-
phy at lm resolution), r=1 m can be used as the fundamental
tiling, with small interpolation adjustments as needed to
accommodate the existing sensors (e.g., with RapidEye and
PlanetScope adjusted to 4 m (level 2), SENTINEL-2 to 8 m
(level 3), pan-sharpened Landsat at 16 m (level 4), Landsat
at 32 m (level 5), and MODIS at 256 m (level 8)).

C. Example Conversion to Pixel/Tile Index

The following example shows an assignment of a specific
WGS84 latitude/longitude from the MODIS sensor to a
pixel and tile. Longitude −106.3017 and Latitude 35.8785 is
UTM Zone 13N Easting 382497.99 Northing 3971254.80.
For a pixel resolution of 1 meter, this would fall in the pixel
whose upper left corner is at 382497, 3971255 which is
identical to the zone pixel gi,gj address. For a pixel resolu-
tion of 240 meters, the sample would be in the pixel with
upper left location 382320, 3971280 and gi,gj address 1593,
16547. The global pixel indices can be calculated via

gi = r *
Easting

r
and g j = r *

Northing

r
+ 1 .

The corresponding tile indices for r=1, x0=0, y0=0,
xn=4096, yn=4096 are ti=93, tj=970. Using a central merid-
ian origin (x0=500000), ti=−29, tj=970. For the MODIS 240
m pixel and xn=4096, yn=4096, ti=0, tj=5. The tile indices
can be calculated from the pixel indices via

ti =  gi
xn

 and t j = g j

yn
+ 1 .

Tile indices are mapped to a string which is part of the file
name (along with date of acquisition and sensor) stored in a
long-term storage 1212 (e.g., Google Cloud Storage or
Amazon S3). An example for MODIS would be “2006-06-
09-1800_12N_12_MO_09qkm.jp2,” which was collected
on Jun. 9 2006 at 18:00 UTC in Zone 12N with tj=12 by the
Terra sensor. There is no ti because a tile covers the entire
E-W span of the zone. An example for Landsat 7 would be
“2015-01-18-L7-034033_13N_007_069_321.jp2” which
was collected on Jan. 18, 2015 from zone 13N with ti=7 and
tj=69.

D. Ingestion Process

FIG. 12 depicts an example environment for processing
and analyzing data in accordance with techniques described
herein. Platform 1202 includes an ingestor module 1208
(comprising one or more Google Compute Engine instances
and a Celery master). Ingestor module 1208 connects (e.g.,
via one or more networks depicted in FIG. 12 as a single
network cloud 1214) to various sources of observational
data. Two examples shown in FIG. 12 are NASA FTP site
1204 and a proprietary repository 1206 (e.g., storing aerial
photography). Ingestor module 1208 retrieves data (e.g.,
using the FTP protocol) from the repositories and writes
them to storage 1212 (e.g., creating a local mirror of the
retrieved data).

The following is an example of how ingestor 1208 obtains
data, and in this particular example, the ingestion of MODIS
data. As explained throughout the Specification, other

US 11,635,510 B1

15 16

5

10

15

20

25

30

35

40

45

50

55

60

65



sources of data (in other formats) can also be processed
using embodiments of the techniques described herein.

In various embodiments, ingestor module 1208 executes
a shell script that manages ingestion. The shell script
executes (e.g., as a cronjob running every four hours) and
launches an LFTP process to obtain a directory listing of
FTP site 1204. Ingestor module 1208 identifies files that are
new since the last time the script ran, by parsing the
directory listing into a list of potential files to retrieve, and
then checking against a Redis database 1216 to see whether
the files were previously retrieved. Previously retrieved files
are ignored and threads are started to download any new
items. In an example operation, 50 to 100 new files are
identified in NASA’s MODIS collection each time the
ingestor script executes (depending, e.g., on when NASA’s
MODIS processing occurs). Each raw MODIS Hierarchical
Data Format (HDF) file obtained from FTP site 1204 is
approximately 140 MB. Multiple files can be downloaded in
parallel (e.g., using threads), and locks can be used to
prevent multiple threads from trying to download the same
file simultaneously. In the event the download fails (e.g., due
to a network connectivity problem, or if the file length is not
correct when it is finished), the script can restart the down-
load as needed. Newly seen files are copied to storage 1212
and entries are made in Redis database 1216 (e.g., using
python) indicating the new files as having been downloaded
successfully.

The raw data (e.g., MODIS data obtained from NASA) is
stored in “granules.” In various embodiments, every pixel in
a granule is stored. In other embodiments, a cloud mask
(included by NASA with the granule) is used to shrink the
number of pixels stored. The following is an example file
name for a granule stored in storage 1212, and mirrors
NASA’s nomenclature:

gs://modis/allData/6/MOD02QKM/2015/200/
MOD02QKM.A2015200.0040.006. 2015200134321.hdf

The components of the path name are:
*gs://: Google Storage designator
*modis: storage bucket
*allData: (inherited from NASA storage path)
*6: collection number (equivalent to a NASA version

number)
*MOD02QKM : data type (MODIS 02 quarter kilometer

(250 m) bands)
*2015: year
*200: Julian day of year
*MOD02QKM.A2015200.0040.006.2015200134321.hdf:

a file name assigned by NASA using NASA’s naming
scheme

In an example embodiment, platform 1202 handles twelve
types of data granules, each produced every five minutes
over daylight portions of the globe. There are approximately
1,728 new files per day, 630,000 files per year, and 10
million files total.

An example of pseudocode for ingesting data (e.g., from
site 1204 by ingestor module 1208) is shown in FIG. 13. An
example of pseudocode of preprocessing data (e.g., by
preprocessor 1210 of the data ingested by ingestor module
1208) is shown in FIG. 14.

E. Pre-Processing

Pre-processor module 1210 (also comprising one or more
Google Compute Engine instances and a Celery master)
takes all of the newly retrieved files (e.g., the 50 to 100
MODIS files obtained by ingestor 1208 every four hours)
and pre-processes them. In various embodiments, pre-pro-

cessing executes as a cron job (e.g., every four hours), and
executes as a first portion of the process the ingestion
processing described above. Pre-processing can also be
triggered by an event, such as the appearance in a particular
directory of new data.

A given granule can be split into smaller tiles (e.g.,
approximately twenty tiles) by pre-processor module 1210.
The smaller tiles are easier to perform various operations on
by platform 1202. Pre-processor module 1210 can also
process large repositories of historical data (e.g., the last n
years of data stored with NASA FTP site 1204) by perform-
ing a parallel run using an appropriate number of nodes (e.g.,
200 multi-processor nodes). The Celery system distributes
the workload over the (e.g., 200) nodes, with each node
executing the same script as is executed for the newly-seen
files (but in parallel).

The following is an example file name for a .xz file stored
in storage 1212:

gs://modis-xz/utm_v7q_09/15N/03/2015-06-20-1935-
MY_15N_03 .bin.xz

The components of the path name are:
*gs://: Google Storage designator
*modis-xz : storage bucket
*utm_v7q_09 : type and version
*15N: zone
*03: tile y index
*2015-06-20-1935-MY_15N_03.bin.xz: file name
An .xz file comprises an array of N samples. The samples

are x and y coordinates as 16-bit unsigned integers quantized
to 30 UTM pixel indices, followed by b bands of pixel
location (DN) values. The array of N samples is compressed
using the Lempel-Ziv-Markov chain compression tech-
nique. As previously mentioned, a given granule may have
associated with it a cloud mask provided by the original data
source (e.g., a NASA provided cloud mask).

In such a scenario, the cloud mask can be used to reduce
the number of points included in the .xz file, with the file
structure remaining the same.

The .xz tiling process can be bypassed, as applicable, and
JPEG2000 compressed image tiles can be created directly
from the raw MODIS data using an appropriate interpolation
method. The following is an example file name for a .jp2 file
stored in storage 1212:

gs://descartes-modis/2015-07-29-
1620_16N_09_MO_09qkm.jp2

The components of the path name are:
*gs://: Google Storage designator
*descartes-modis : storage bucket
*2015-07-29-1620_16N_09_MO_09qkm.jp2: file name,

date, time, zone, row, sensor, data type, and file type.
In various embodiments, additional (optional) preprocess-

ing is performed (e.g., prior to the .xy tile being written).
One example of such additional processing is scaling DN
values to top of atmosphere reflectance. The physical mean-
ing of the numbers associated with each pixel location (DN)
varies by sensor. Various operations (e.g., performing cloud
removal, described in more detail below) make use of values
which represent reflectance as observed at the top of the
atmosphere. Some sensors, such as SENTINEL-2, deliver
data in this format, and do not require scaling. Sensors such
as MODIS and Landsat, however, deliver data in radiance
units, which require various scaling to obtain reflectance.
The metadata associated with the image data contains some
of the appropriate constants, while others (such as the
distance from the sun to the earth) can be tabulated from
other sources as needed. The conversion formula to reflec-
tance in the range of 0.0 to 1.0 is:
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gain =
(LMAX - LMIN)

(QCALMAX -QCALMIN)

bias = LMIN - gain *QCALMIN

toar f =
π * earth_sun_dist_n_au2

sol_irrad * cos(solar_zenith_angle)

scaled DN = DN * toar f *gain + toar f * bias.

To store the reflectance in a 16-bit integer, it is scaled by
an additional factor of 10000. As another example of
optional preprocessing, pixels for which no data is present
(e.g., due to scanline errors) can have their values set to zero,
which can be used in later applications, as described in more
detail below.

III. Creating Images With Reduced Atmospheric
Obstructions

FIG. 15A illustrates an example of a portion of the Earth
as viewed from above (e.g., by a satellite). Suppose FIG.
15A illustrates a portion of Iowa. Lines such as 1502, 1504,
and 1506 are gravel roads—generally spaced one mile apart.
Other elements visible (e.g., to a satellite) are fields, such as
field 1508, tree 1510, river 1512, and house 1514. Region
1516 of FIG. 15A is obscured by clouds. In some cases, an
obstruction (such as a cloud) may completely obscure the
ground underneath it. In such a scenario, the optical depth
can be represented as a “0,” indicating that an obstruction
can’t be seen through. Correspondingly, a cloudless (i.e.,
completely visible) portion of ground can be considered as
having an optical depth of “1.” For some datasets (e.g.,
Landsat), a cloud mask accompanies the granule (e.g., as
obtained from site 1204), indicating for a given pixel (in a
binary manner) whether the pixel represents a cloud or not.

As shown in FIG. 15B, clouds can take a variety of forms,
and different types of clouds (or other atmospheric obstruc-
tions, such as smoke, snow, haze, and smog) can conceal the
ground beneath them in different ways and to different
degrees. In FIG. 15B, a tree (1552) and corn plants (1554)
are shown. Example clouds are also shown, such as a
cumulus cloud 1556 (which will be opaque in the center
part, but have fuzzy edges), low foggy stratus clouds (1558),
and very high cirrus clouds 1550 (where the sun shines
through the cloud but the illumination is affected by the
cloud).

As mentioned above, sometimes the cloud may com-
pletely obstruct what is underneath it, and sometimes the
view may be completely unobstructed. Sometimes, the opti-
cal depth value is inconclusive/insufficient to articulate
whether a pixel is a cloud or not. For example, around the
edges of pixels that have optical depths of 0 or 1, there will
typically be pixels with optical depths somewhere in
between 0 and 1 (e.g., 0.276). In some embodiments, a
“cloud” pixel is defined as a pixel with an optical depth of
less than 0.4 (or another appropriate value), and used as a
mask. Cloud masks can also be more than 1 bit (e.g., 2 or 3
bits, indicating cloud, not cloud, or maybe cloud) per pixel.

One value that can be used in image processing/analysis
is the normalized difference vegetation index (NDVI),
which is a ratio

NIR - VIS

NIR + VIS
,

where VIS and NIR stand for the spectral reflectance mea-
surements acquired in the visible (red) and near-infrared
regions. If a cloud affects each of these bands equally (e.g.,
it reduces each one by 10%), the ratio is unchanged. As an
example, dust in the atmosphere scatters blue light more
preferentially than green and red light. A cloud that affects
red more than infrared will change the vegetation index. But,
if that change occurs evenly across the whole scene, a
correction can potentially be applied. For example, if a
probe 1520 is present for which the NDVI is known, and a
different NDVI value is measured, if a sufficient number of
probes are present in the scene, it could be possible to correct
the whole scene for whatever obscuration is happening that
is impacting the red and the infrared differently. Accord-
ingly, a refinement to the definition of a “cloud” is some-
thing that affects NDVI in an uncorrectable way.

One approach to mitigating cloud cover (and other atmo-
spheric obstructions) in imagery is to use the temporal
dimension (e.g., to examine a set of images across time).
One option is to opt for the largest number of samples in
each pixel, without regard for resolution. A second option is
to opt for the best resolution, with fewer samples per pixel.

Satellites (and other image sources) have a temporal
period. For example, a given satellite might be above a given
portion of land every 16 days. There may also be multiple
satellites (e.g., two satellites), taking images on alternate
days, where on one of the days the satellite will be directly
above a region, and alternate days the satellite will be off to
one side or another. Accordingly, for a given pixel, there
could exist 20 observations, collectively, by various satel-
lites over a 16 day period. Of those 20 observations of a
given pixel, many may be masked out because of clouds (or
other atmospheric obstructions). However, of those 20
observations of a given pixel, one pixel is the “best” pixel
(e.g., the least obstructed). And, a composite image of an
area can be created using data associated with each of the
“best” pixels from a sequence of images covering the area,
using techniques described in more detail below. The “best”
pixel can be considered the one in a set (e.g., a time series)
for which given spectral information associated with that
pixel was last obscured by atmospheric obstruction.

A variety of approaches can be used to select the “best”
pixel. One example is to use the NDVI value associated with
the pixel (a one-sided error distribution). FIG. 16 illustrates
a set of twenty NDVI values observed for a given pixel in
a sixteen day period (starting on the 200th day of the year).
While an NDVI value can range from −1 to 1, in this
example, values below 0 have been excluded. In the sixteen
day period, four “cloud free” observations are present (the
points above the threshold NDVI line, set in this example at
0.6). Of those four observations, the observation on day 203
(1604) of the particular pixel being examined has the highest
NDVI value (1604) and is thus the “best” pixel in the sixteen
day sequence. For a given pixel in a given sequence of
images, in some cases, no data may be present. One reason
for the missing data is that a cloud mask (e.g., provided by
NASA and described above) was applied. Another reason
for missing data is that aberrations (due to satellite position)
yield unusable image information. Suppose days 205 and
209 are missing data for the pixel being examined in FIG.
16. In various embodiments, the NDVI values of pixels with
missing data are set to zero (e.g., as shown at 1606 and
1608). As mentioned above, in addition to clouds, a variety
of other atmospheric obstructions can be “removed” in the
composite image. For example, a composite image of a
region affected by a wildfire can be created by selecting,
collectively, the least smoky pixels from a bin of images.
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And, a set of images collected during a dust storm (e.g., on
Earth, or elsewhere) can be used to create a composite image
with the least amount of dust present in each pixel, etc. Other
examples of “obstructions” that can be reduced in accor-
dance with techniques described herein include digital defo-
liation (e.g., selecting for the pixel least obscured by plant
cover using an appropriate index) and using a water index to
select for a maximum (minimum) value to see a composite
image of the ground at its wettest (or driest) as applicable.

The use of the NDVI value for cloud detection relies on
the fact that clouds are spectrally “flat.” In other words, the
reflectance for each band is similar. This is equivalent to
clouds being white, or a shade of gray. The formula for
NDVI

NIR- V IS

NIR+ V IS

means clouds have an NDVI value near zero, since the terms
in the numerator cancel. Selecting maximum value pixels is
particularly effective with vegetation pixels, which have
NDVI values which are much higher, since near-infrared
(NIR) reflectance is much larger than red (VIS) reflectance.
The same approach works for other differential indexes such
as the normalized difference water index (NDWI), normal-
ized difference snow index (NDSI), shortwave infrared

SWIR - V IS

SWIR + V IS
�

or various permutations of differential vegetation index
(e.g., using visible green instead of visible red). Other cloud
rejection algorithms can work using other features of clouds.
For example, since clouds are white or gray and are usually
brighter than land cover they can be rejected over a back-
ground which is not white or gray by using an HSV
(hue/saturation/value) decomposition of the RGB (red/
green/blue) values and selecting pixels which are the lowest
value or the lowest saturation.

FIG. 17 illustrates an example of a process for creating a
composite image. In various embodiments, process 1700 is
performed by image creator module 1218.

The process begins at 1702, when a first tile is received for
processing, and the previous fifteen (or other appropriate
number of) tiles in a time series are also received. As one
example, at 1702 image creator module 1218 (comprising
one or more Google Compute Engine instances and a Celery
master) determines that a recently preprocessed tile (e.g., an
output of pre-processor module 1210) is available and
retrieves that tile for additional processing. The images
corresponding to the previous fifteen days’ worth of that
particular tile are also retrieved. As another example, pre-
determined time sequences of tiles (e.g., days 0-15, 16-31,
etc.) are selected for processing (e.g., as the days elapse).
Other size bins of data (i.e., other than 16 days) can also be
used. Further, different size bins can be used for different
regions (e.g., larger bins for cloudier areas) and/or different
times of year (e.g., smaller bins in fall and larger bins in
spring, where there are fewer clouds in a region in the fall
than in the spring). Further, the images included in a bin
need not be adjacent temporally. For example, a ten year
stack of tiles from the same day of the year (e.g., Jan. 1,
1990; Jan. 1, 1991; Jan. 1, 1992; etc.) can be used as a bin,

as can an arbitrary number of tiles selected at arbitrary
intervals (e.g., depending on the application).

At 1704, a data hypercube is created by stacking each of
the multi-band image tiles in the bin. In one example, the
data hypercube created at 1704 is 4-dimensional, with the
dimensions being pixel dimension (e.g., Red, Green, Blue,
Near-Infrared, NDVI, Collection date), x-dimension, y-di-
mension, and time dimension. In various other embodi-
ments, additional and/or different bands comprise the multi-
band information included in the data hypercube. As process
1700 progresses, the time dimension is compressed to a
single layer, and the data is reduced to a cube of values, or
a 2-dimensional plane for each image component as appli-
cable.

At 1706, the maximum NDVI is taken along the time
dimension (e.g., by a python script). As a simplified example
of the processing performed at 1706, suppose the data being
operated on at 1706 includes a 3×3 image plane for the
NDVI component on a particular day, and that only a total
of two days’ worth of tiles are used in the time series.
Example data for a first day is as follows:

0 143 199
10 155 202
12 147 198
Example data for the second day for the NDVI plane is as

follows:
20 122 204
10 157 199
11 141 206
After taking the maximum NDVI over the two days, the

image plane would be:
20 143 204
10 157 202
12 147 206.
At 1708, a composite image is generated. As mentioned

above, the maximum NDVI is used to determine, for a given
pixel position (e.g., 1×1, 3×3), which image’s pixel in that
position was the most cloud free in the time series. At 1708,
the spectral information (e.g., any/all of RGB, NDVI, Infra-
red, etc.) associated with the “best” pixel (e.g., the one
having the maximum NDVI for that pixel position in the set)
is used to generate the composite image.

In various embodiments, additional metadata is included
in the composite image. For example, the particular day of
the year that was selected as the “best” for each pixel can be
stored (e.g., day 203). As another example, the total number
of valid observations that were considered can be stored. An
example of a “valid” observation is any of the non-zero
observations seen in FIG. 16 (i.e., not 1606 or 1608). In
various embodiments, other processing (e.g., downstream of
process 1700) can make use of the number of valid obser-
vations.

For example, if out of 20 observations, only two are
deemed valid, this could indicate a particularly stormy set of
weeks (and that the maximum value recorded for that pixel
during those two weeks is not likely to be representative of
a cloud free image). A later process can have a requirement
that (e.g.) a minimum of three valid observations be seen in
order for that pixel in that particular composite image to be
considered representative.

Finally at 1710 the processed image is stored (e.g., to
storage 1212). The following is an example file name for a
composite image file:

gs://modis-max/utm_v7r_max/2015/
max_2015_df200_15N_03_v7r.tif
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The components of the path name are:
*gs://: Google Storage designator
*modis-max: storage bucket for
*utm_v7r_max: type and version
*2015: year
*max 2015_df200_15N_03_v7r.tif: file name, with

day=200, 15N=zone, and row=3
In some embodiments, there is one composite image per

tile per day, with approximately 1200 MODIS tiles covering
the globe. The resulting composite image can store a variety
of features in a single or multiple bands as applicable. For
example, the resulting composite image can store a single
scalar feature in a single band, or can store one or more
vector features in multiple bands.

A variety of analyses/manipulations can be performed
using data such as the image data stored in storage 1212,
whether in conjunction with process 1700 (e.g., as one or
more additional steps), or as a separate process (e.g., after
the storing performed at 1710, or entirely independent of the
execution of process 1700). Further, data from one (e.g.,
MODIS), or multiple (e.g., MODIS and Landsat) sources
can be operated on, whether individually or in combination.

A variety of example applications using a variety of such
techniques are described below. As one example, an image
(or set of images, as applicable) can be used to generate a
boundary map (an example of which is a field map). The
boundary map can be used in a variety of ways. As one
example, the map can be used to reduce the noisiness of an
image. As a second example, the map can be used in image
restoration to reduce artifacts. A boundary map can be also
used as a mask to classify regions of an image (e.g., to
produce an image of average values within the boundary or
otherwise homogenize the pixel values for at least one band
of information within the boundary, such as by taking a
median value, a minimum value, etc.).

IV. Creating a Boundary Map

Some imagery applications work on an image as a whole.
As one example, an image search application may take as
input a photograph of a giraffe, and provide as output other
photographs of giraffes selected from a corpus of photo-
graphs. As another example, in some applications (e.g.,
involving remote-sensing imagery) it is desirable to operate
on the smallest area of an image possible (e.g., at the pixel
level, which typically corresponds to the smallest area
resolvable by the imaging sensor). For yet other applications
however (e.g., various applications involving land use clas-
sification), it can be more desirable to operate over regions
larger than a pixel (but smaller than the image as a whole).

Returning to the example of FIG. 15A, suppose field 1508
is a corn field, as is field 1518. Field 1522 is a soybean field.
Each of fields 1508, 1518, and 1522 is an example of a
“Common Land Unit (CLU),” described by the Farm Ser-
vice Agency (FSA) as an individual contiguous farming
parcel that has a permanent, contiguous boundary, a com-
mon land cover and land management, and a common owner
and/or common producer association. The boundaries of a
CLU are generally delineated from relatively permanent
features such as fence lines, roads, and/or waterways. More
generally, as used herein, a field is an example of a region
bounded by edges that are temporally persistent.

In various applications, the ability to treat a given pixel as
being part of a particular region would be desirable. For
example, agricultural land use will generally be uniform
over a given field, which will typically occupy multiple
pixels in a particular image. Processing each pixel indepen-

dently can thus be (1) unnecessarily computationally expen-
sive, to the extent that the results of the processing produce
different outcomes for a field’s pixels, and (2) will also
necessarily be needlessly inaccurate. By incorporating the
knowledge that groups of pixels should be considered col-
lectively, more accurate results can be produced, with
greater efficiency. Accordingly, being able to treat all pixels
(e.g., pixel 1524) within a given region of a satellite image
(e.g., within field 1522) uniformly can be beneficial (e.g.,
when classifying field 1522 as containing soybeans vs. corn
vs. water). When examining the image depicted in FIG. 15A
for land use classification purposes, all of field 1508 should
be designated “corn field,” as should all of field 1518. All of
field 1522 should be designated soybeans.

The USDA makes CLU data available (e.g., as CLU
maps). Unfortunately, access to CLU data is restricted to
entities certified by the FSA as working in cooperation with
the Secretary of Agriculture. A company (or individual),
such as an environmental research company or a land use
planner (unaffiliated with the Secretary of Agriculture) will
accordingly be unlikely to benefit from CLU data.

Even where an entity has access to CLU data, such data
has various limitations. As one example, CLU data can
become stale. An entity wanting a current boundary map for
a particular region (e.g., where land usage has changed
and/or where existing CLU data is inaccurate) may have to
wait a year or longer for an updated set of government-
provided CLU data. As another example, non-agricultural
land uses (e.g., rivers, lakes, residential development, indus-
trial development, mines, etc.) are outside the narrow defi-
nition of a CLU, as are farming plots outside of the United
States and/or potentially American farming plots not asso-
ciated with the FSA/USA. The ability to uniformly treat all
pixels bounded by house 1514 (e.g., including pixel 1526),
or all pixels bounded by river 1512 (e.g., including pixels
1528 and 1530) can be beneficial, despite those regions not
representing CLUs.

Using techniques described herein, boundary maps can be
created, e.g., from imagery stored in storage 1212. In
addition to delineating CLUs (also referred to interchange-
ably herein as “fields”), boundaries of other types of con-
tiguous land use (e.g., forests, grasslands, mines, parking
lots, etc.) can also be determined. Further, the approaches
described herein can be applied to other forms of imagery
(e.g., other than land observations). Accordingly, as used
herein, “fields,” “regions,” and “segments” will generally be
used interchangeably, with a CLU being an example of a
field/region/segment.

While various examples described herein will refer to
agricultural fields (e.g., a corn field adjacent to another corn
field or a soybean field), “fields” (and the approaches
described herein) are not limited to an agriculture context.

A first step in extracting fields (e.g., as a dataset) is to find
their boundaries. As mentioned above, field boundaries
manifest themselves in satellite imagery as edges that are
temporally persistent. That temporal persistence, together
with the ability to analyze a stack of satellite images, allows
field boundaries to be distinguished from edges arising from
ephemeral phenomena (e.g., clouds).

The source imagery for boundary map creation can
include satellite imagery from any of several different
sources, each of which have been preprocessed and divided
into uniform tiles, and stored in Google Cloud Storage
(GCS) buckets (e.g., as described above). Images can come
from government sources (e.g., Landsat, NAIP) and/or 3rd-
party sources (e.g., Planet Labs, RapidEye), as applicable. It
is to be noted that while cloud removal has been described

US 11,635,510 B1

23 24

5

10

15

20

25

30

35

40

45

50

55

60

65



as a technology that can be applied to imagery data (e.g.,
stored in storage 1212), cloud-free images are not necessary
as input to the applications described below.

One approach to mitigating the effects of cloud and other
image clutter is to average pixel values over many images,
taken over a long time interval. However, averaging also
tends to diminish differences between fields. Adjacent fields
with different land uses can look very similar after averag-
ing, diminishing the strength of the edge between them. An
alternate approach is to determine edges for each image of
a temporal stack, and then average the results over time.
While field boundaries may be obscured in some images,
over a long enough period of time, they will appear in a
greater fraction of the images than ephemeral edges.

The pixel values of a satellite image can be regarded as
samples of an underlying function ù(x,y), defined at every
point on the ground contained within the image. In terms of
this function, the values of ù(x,y) will change much more at
a field boundary than within a field. This can be measured by
computing ?∇ ù(x, y) . Edges can be characterized as those
points (x, y) for which ?∇ ù(x, y) is large, whereas within a
field, the gradient will be zero (in an ideal case).

For images, the points (x, y) are only defined at discrete
points { x1,x2, . . . ,xM} and { y1,y2, . . . , yN} . Finite
differences can be used to approximate

∇ f (x� y) =
∂ f

∂ x
(x� y)�

∂ f

∂ y
(x� y) :

∂ f

∂ x
(xi� y j) ≈ f (xi+1� y j)- f (xi� y j) = Dx f (xi� y j)�

(�)

∂ f

∂ y
(xi� y j) ≈ f (xi� y j+�)- f (xi� y j) = Dy f (xi� y j).

(2)

(For i=M or j=N, Neumann boundary conditions can be
used. That is, Dxù(xM, yj)=0=Dyù(xi, yN) is assigned.)

The discrete gradient magnitude:

?Dù(xi, yj?=√?Dxù(xi,yj)?
2+?Dyù(xi,yj)?

2. (3)

is defined for images with multiple spectral bands, so that
each ù(xi, yj) is a vector (ù1(xi, yj), . . . , ùL(xi, yj)), and Dxù

and Dyù will be vector-valued as well. Then ?Dxù(xi, yj)? is
the length of this vector:

Dx f (xi� y j)2 =
k=�

L

(Dx fk (xi� y j))
2
�

(4)

and similarly for ?Dyù(xi, yj)?.

The finite difference operators Dx, Dy are implemented
using sparse matrices, so that the “differentiation” process
includes reshaping an image ù into a vector, multiplying by
the appropriate matrix, then reshaping back into an image.
The construction of the sparse matrices is as follows. First,
one-dimensional finite differencing (with Neumann bound-
ary conditions) of a vector with K components is obtained
with the following matrix:

BK =

-1 1 0 0 … 0

0 -1 1 0 … 0

⋮ � � ⋮

0 … 0 -1 1 0

0 … 0 0 -1 1

0 … 0 0 0 0

.

(5)

Accounting for the location of indices to correspond to
differentiation with respect to x or y is accomplished using
Kronecker products. If IL denotes the L×L identity matrix,
then for use with M×N×L images,

Dx=(IM^BN)^IL, (6)

Dy=(BM^IN)^IL. (7)

This produces matrices that are (MNL)×(MNL) in size.
They are constructed so that if ù is an M×N×L image,
unwinding the pixel values of ù into a vector, multiplying
this vector by the matrix, and then reshaping the product
back into an image will give the desired finite-difference
derivative.

A. Example Process

FIG. 18 illustrates an example of a process for creating a
boundary map. In various embodiments, process 1800 is
performed by boundary map creator module 1220. The map
is created by extracting fields from satellite images of a
particular location, for which there may be many different
observations over a period of many years. As will be
described in more detail below, process 1800 can be termi-
nated prior to the completion of the boundary map, as
intermediate products (e.g., the output of portion 1808 of the
process) are also useful for various applications.

One example way to implement boundary map creator
module 1220 is (as with other components of platform 1202)
to use a combination of python scripts and libraries (e.g.,
NumPy, sciPy, scikit-image). In particular, computation can
be performed using a set of one or more Google Compute
Engine virtual machine instances. Parallelization over tiles
and dates (the latter for gradient computation, which is done
independently with each image) can be performed using
either a Celery master or with Bash shell scripts, depending
on the geographic scope of the computation.

The process begins at 1802, when a set of images corre-
sponding to a particular tile is received. As one example, at
1802 boundary map creator module 1220 receives an
instruction (e.g., in response to the execution of a periodic
script, or in response to a user request submitted via a web
frontend) to generate a boundary map for a particular portion
of land (e.g., by receiving a set of bounding coordinates, an
identification of a particular tile identifier, etc.). A set of tiles
corresponding to the location is retrieved for processing. As
one example, suppose a request is received to generate a
boundary map for the portion of land depicted in FIG. 19A.
FIG. 19A is an example of a 2048×2048 sized portion of a
Landsat 7 image and includes clouds, cloud shadows,
incomplete tile coverage, and the scanline corrector artifact.
At 1802, tile 1900 is retrieved, along with a time series of
other tiles depicting that portion of land. In one example,
fifteen years of imagery, with approximately forty observa-
tions a year, is retrieved at 1802 (approximately 600 images
retrieved).

The scope of the set of tiles retrieved at 1802 can be
adjusted as applicable (e.g., taking into account tradeoffs).
The longer the time series (e.g., fifteen years vs. two years),
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the less likely it will be for clutter (e.g., scanline artifacts,
incomplete tile coverage, clouds, etc.) to erroneously impact
boundary lines. However, a longer time series can also result
in reduced currency. For example, suppose a field was
bisected three years ago (or its usage changed (e.g., from
rural to urban)). When fifteen years of images are examined,
the changes made three years ago may not be identified as
sufficiently persistent. Similarly, boundary maps for portions
of land that are generally less cloudy (e.g., portions of
Arizona desert) may achieve results of similar quality to
those of cloudier environments (e.g., portions of Colorado)
with a smaller time series (e.g., three years of observations
instead of fifteen). As yet another example, process 1800 can
be performed using multiple kinds of observations (e.g.,
processed Landsat tiles and drone photographs that have
been preprocessed to align with the portion of land being
operated on). For example, a farmer or other entity may
desire a highly accurate boundary map to be generated for a
50-mile radius of a particular grain elevator using a set of
recent observations (e.g., obtained once a day over the last
week via low flying aircraft).

At 1804, a gradient magnitude image is created for each
image in the set of images retrieved at 1802. The gradient
magnitude ?Dù? is computed for every pixel in a given image
in the set of retrieved images of the location (e.g., using
python code with a differentiation library and a sparse matrix
library). A threshold value of ?Dù? that empirically provides
a reasonable separation between edge pixels and within-field
pixel fluctuations is selected. One example of such a thresh-
old value is 50. It is also possible to leave ?Dù? unthresh-
olded, or to use a threshold value of 0, and rely on temporal
persistence to seperate edge pixels from within-field pixel
fluctuations. In the case of multi-band imagery, each band
can be independently processed in accordance with process
1800, and the results can be variously combined. As one
example, suppose a set of imagery includes six bands of
spectral information. Six gradients can be respectively deter-
mined at 1804 (e.g., in parallel) for each of the six bands, and
a six component vector generated. The gradient magnitude
image created for each received image at 1804 can be stored
in storage 1212 (e.g., as a GeoTIFF image, preserving
georeferencing information). FIG. 19B depicts a gradient
magnitude image corresponding to the image depicted in
FIG. 19A. The content of the image 1950 is the magnitude
of the gradient at every pixel in image 1900 and summing
over bands (resulting in a single band image).

At 1806, each of the gradient magnitude images (gener-
ated at 1804) is examined to tally the number of times a
given pixel exceeds the gradient threshold. The edge count
(across all the images in the set of retrieved images of the
location) is saved as a gradient count image (e.g., as a
GeoTiff image) in storage 1212. An example of a gradient
count image is shown at 2002 in FIG. 20. As shown at 2002,
for each pixel, the brightness indicates how many times in
the time series (e.g., set of 600 images) the pixel met the
edge criteria (i.e., had a gradient magnitude that exceeded
the threshold). As shown variously at 2002, structural out-
lines are present. Approximately 75% of the image (starting
from the upper left corner of the image) is darker than the
rest. The darkening is due to the Landsat pattern.

As mentioned above, in some cases, observational data
for some pixels within a given observation may be missing.
As one example, region 1002 of the image depicted in FIG.
10A is a region where no data was available in a Landsat 1
MSS observation. If the observation depicted in FIG. 10A
was the only observation used to make a boundary map, it
might be the case that the edges of region 1002 might

erroneously be classified as edges. Where a time series of
many tiles is used in process 1800, an occasional instance of
missing observational data for a given pixel is unlikely to
impact the final boundary map, as most of the other obser-
vations will contain usable data. It is possible, however, that
many observations of the same region in a time series may
be missing observational data. The varying intersection of an
image with Landsat scenes means that some pixels are
outside the intersection more often than others. Another
issue is the scanline corrector artifact of Landsat 7, which
affects some pixels more than others.

One approach to mitigating the erroneous classification as
edges of the boundaries of observed pixels with pixels
missing data is to tally the number of times each pixel is not
within the NODATA region for each image. The presence
count (across all the images in the set of retrieved images of
the location) is also saved as an image. An example of a
presence count image is shown at 2004 in FIG. 20. One way
to determine which pixels are within the NODATA region is
(e.g., during preprocessing of the image described above) to
reserve a pixel data value of 0 for NODATA. A pixel for
which data is present but the measured value is very low can
be rounded up (if needed) to preserve the meaning of 0 as
NODATA. As needed, the NODATA 0 value can be con-
verted to a not a number (NaN) value for use in additional
processing. As shown at 2004, for each pixel, the brightness
indicates how many times in the time series (e.g., set of 600
images) the pixel was not in a NODATA region (i.e., data
was captured by the imaging sensor for the pixel). As with
2002, as shown variously at 2004, structural outlines are
present. And, approximately 75% of the image (starting
from the upper left corner of the image) is darker than the
rest. The darkening is due to the Landsat capture pattern.
Further, scanline related errors are visible along the right
side of the image as stripes, with some pixels having fewer
observations than others due to obscuring by Landsat 7
artifacts.

The pixelwise quotient of the edge count and presence
count (from the respective edge count image and presence
count image) gives the frequency with which each pixel,
when present, is considered to be an edge pixel (2006). This
gives a measure of each pixel’s edge persistence. Any
arithmetic involving a NaN value will result in a NaN value
(e.g., when the difference is taken), so the finite difference
involving pixels in the NODATA region will also be a NaN.

Suppose that the pixelwise quotient of the edge count and
presence count for a given pixel is 0.20. This means that
20% of the time the pixel was observed, it was determined
to be an edge pixel. A threshold for this quantity is chosen,
and used at 1808 to make a final selection of those pixels that
are considered to be part of field boundaries. The result is
saved (e.g., in storage 1212) as a binary GeoTIFF image,
indicating which pixels are boundaries. Examples of two
different thresholds (0.20 and 0.15) being applied to the
same gradient presence image are shown in FIG. 21 (as
image 2102 and image 2104). The tradeoff in selecting a
threshold value is the inclusion of spurious edges (lower
threshold) vs. edge incompleteness (higher threshold). FIG.
22 illustrates a 28-year mean gradient presence image of a
portion of land in China at 2202. Greater cloudiness and
smaller field sizes make boundary detection more challeng-
ing. Examples of two different thresholds (0.08 and 0.12)
being applied to image 2202 are shown as image 2204 and
image 2206.

The binary image generated as output at 1808 (an
example of which is shown at 2006 in FIG. 20) can be used
for a variety of purposes. One example is as a mask (e.g.,
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indicating which portions of a region are edges/boundaries
and, e.g., when the mask is inverted, which are not). Accord-
ingly, in various embodiments, process 1800 ends at 1808,
with the generation of a binary image such as image 2006.

The output of portion 1808 of process 1800 can be
enhanced/refined, for example to generate a boundary/field
map in which individual fields are identified and given
labels. One approach is as follows. Take the set of identified
non-boundary pixels (e.g., from the output of portion 1808),
and separate them into connected components. One way to
do this is using a

Python package such as scikit-image, which provides
image processing functionality (including for finding con-
nected components) and uses NumPy arrays as image
objects. Other packages providing morphological process-
ing can also be used, as applicable (e.g., scipy.ndimage). At
1810, each such connected component is given a positive
integer label as an identifier (e.g., using a “label” function
made available by an appropriate Python package for label-
ing connected components). The set of pixels having a
common label now constitute a field, and the boundary
pixels are not (yet) assigned a field. The assignments are
saved as an integer-valued image. FIG. 23, at 2302, depicts
a set of fields (connected components) to which a random
color map has been applied (i.e., with each pixel within an
arbitrary field being colored the same as the other pixels in
that field). Edges can be refined by alternately interpolating
(2304) and redifferentiating (2306), described in more detail
below.

Imperfections in the edge identification process can lead
to issues such as excessively thick edges, and stray edge
pixels wholly interior to fields. The boundaries can be
optionally refined/improved (at 1812) using a variety of
techniques. For example, skeletonizing can be used to thin
edges to one-pixel thick, without changing connectivity.
Interpolation can be used to assign field labels to each edge
pixel, according to which field each edge pixel is closest to.
Recomputing edge pixels, by once again computing gradi-
ents and assigning nonzero pixels to edges, allows refine-
ment processing to be repeated. For example, portions
1804-1808 of process 1800 can be performed using the
output of 1810. Different thresholds can be used, e.g., with
the gradient threshold being set at ≥1. Such processing can
be terminated variously depending on application. As one
example, a final boundary map can be created after skel-
etonization, resulting in a boundary map with fields having
a one-pixel-thick edge. As another example, a final boundary
map can be created after interpolation, resulting in a bound-
ary map with every pixel assigned to a field. As mentioned
above, each field is assigned (e.g., via labeling) a positive
integer value that can be used as a field ID or other label.
One example of a format for a final boundary map is to save
it as a raster image (e.g., in storage 1212) which has a field
ID for each pixel. The field ID (minus 1) can be used as an
index for conversion between rasters and field-value arrays.
In various embodiments, additional types of output are
saved in conjunction with process 1800, such as a variety of
shapefiles that describe different field polygons, and state
rasters (e.g., comprising those fields within their boundar-
ies). The shapefiles provide the vertices of polygons in
geographical coordinates. In various embodiments, certain
types of land use, such as urban areas and large bodies of
water are not enclosed in any polygons and are left blank.

Process 1800 has been described thus far in terms of
creating a boundary map for a single tile. A boundary map
over a larger area can also be created (e.g., over a region
such as a state) by merging smaller-scale maps. In various

embodiments, the margining is performed at 1808, so that
fields can be (re)labeled at the larger scale, and to avoid
artificial boundaries at the edges of the smaller scale maps.

Portions of process 1800 are described above as being
performed on all tiles in the set (e.g., 1802 where tiles are
received, followed by 1804 where each image has a gradient
magnitude determined for each pixel). As explained above,
in some embodiments processing on all tiles is performed in
parallel, e.g., with all tiles being retrieved at once, and then
each of the retrieved tiles having per-pixel gradient magni-
tudes determined in parallel (e.g., using Celery architecture).
In other embodiments, at least some portions of process
1800 are performed serially, e.g., with a single image being
retrieved at 1802, and portions 1804-1806 performed with
respect to that image, followed by a second image being
retrieved at 1802 and portions 1804-1806 performed with
respect to the second image, etc., until all images have been
processed in accordance with portions 1802-1806) and pro-
cessing continues (for the set) at 1808.

B. Example Application: Improving Classification

Certain portions of land, such as agricultural fields, are
generally uniform in what they contain. For example, in a
given farmer’s field (e.g., a CLU), typically one type of crop
(e.g., corn or soybeans) will be grown. And, typically, the
contents within a given field are likely to change over time
in the same way (e.g., grow at the same rate, produce the
same yield, be affected by pests in the same manner, etc.).

A field will typically, when observed with remote imagery
sensors, comprise several pixels. Some forms of image
analysis operate at the pixel level (and, e.g., arrive at a
per-pixel result). When each pixel of the field is analyzed
(e.g., by a land use classification technique or set of tech-
niques), it is possible that while most of the pixels within the
field will be classified as corn, various stray pixels within the
field may be classified as soybeans, whether due to errors in
classification technique, limitations in the image(s) being
analyzed, etc. As explained above, for some applications
(e.g., land use classification and yield prediction), it may be
desirable for results to be made uniform across an area (e.g.,
treating the field as the fundamental unit and/or arriving at
a per-field result). As will be described in more detail below,
boundary maps can be used (e.g., in conjunction with
per-pixel analysis approaches) to achieve more uniform
results.

As shown in FIG. 12, platform 1202 includes a classifier
1222 (e.g., a land use classifier) that can classify portions of
land. One way to implement classifier 1222 is as a python
script (or set of scripts). In various embodiments, classifier
1222 takes as input an identification of a portion of land
(e.g., a particular tile identifier, set of coordinates, etc.) and
evaluates the land using a model 1224. Model 1224 is
trained using a training set of imagery (and optionally
additional data) for which land use classification has already
been performed, and an appropriate machine learning tech-
nique, such as a random forest (e.g., using functionality
provided by scikit-learn). FIG. 24 illustrates a three-dimen-
sional representation of how the spectral signatures of two
different crops (corn 2402 and soybeans 2404) change over
time during a typical growing season. In particular, FIG. 24
tracks the brightness of a corn pixel and a soybean pixel,
respectively, in the red and near infrared spectral bands, over
time. Other bands can also be used instead of/in addition to
the spectral bands represented in FIG. 24, and four-dimen-
sional and other representations constructed similarly to
what is depicted in FIG. 24.
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Different types of land cover (e.g., corn, vs. soy, vs. forest,
vs. pavement, etc.) will trace out different curves in a space
such as is depicted in FIG. 24 (also referred to herein as
“light curves”). The differences in such curves can be used
in machine learning training (e.g., using a random forest
and/or support vector machine) to differentiate between the
different kinds of land usage and ultimately to classify
images accordingly. Light curves can also be indicators of
how healthy a crop is, and/or to predict yield. As one
example, during the growing season, when a plant starts
photosynthesizing actively, it becomes much more reflective
in the near infrared than it is in the red, and so its NDVI
values increase. As the plant matures, the NDVI value will
increase even further, and then begin to plateau. Eventually,
as the plant begins to brown, the NDVI will start to decrease,
and, when the plant is harvested or otherwise removed from
the land, the NDVI will drop significantly.

One approach to classifying land is to independently
evaluate each pixel (e.g., using model 1224) and classify
each pixel (e.g., as corn, water, road, etc.) accordingly. A
boundary map, such as one produced in accordance with
process 1800, can be used as an additional input to classifier
1222, to help improve the classification results. The bound-
ary map can be applied after an initial classification is
performed (FIG. 25A). The boundary map can also be
applied prior to classification (FIG. 25B). Further, the
boundary map can be used in conjunction with other types
of analysis, such as yield estimation.

FIG. 25A illustrates an example of a process for enhanc-
ing a classification using a boundary map. In various
embodiments, process 2500 is performed by classifier 1222.
The process begins at 2502 when data to be classified, and
a boundary map, are received. One example of the data
received at 2502 is a time series depicting the region shown
in FIG. 15A across a time window such as a month, or a year.

At 2504, the data received at 2502 is classified. As one
example, for each pixel in a given position (e.g., pixel 1,1
across all received images) classifier 1222 evaluates the data
associated with the pixel and assigns a classification.
Examples of such data include a single spectral band (e.g.,
Near Infrared), a set of bands (e.g., all Landsat bands),
and/or data from other sources associated with the pixel
(e.g., a vector of statistical information such as rainfall
statistics, ground temperature, etc. mapped to each pixel).

FIG. 26 depicts various fields in Iowa, including corn
fields (2604) and soybean fields (2602). Suppose classifier
1222 is examining a stack of images corresponding to the
land shown in FIG. 26. It classifies the land covered by
pixels 2606 and 2610 as soybeans, but classifies the land
covered by pixel 2608 as corn. It is possible that the land
covered by pixel 2608 is in fact corn. It is also possible that
a problem with the data and/or a problem with the classifier
erroneously resulted in pixel 2608 being classified as corn.
Irrespective of the reason pixel 2608 is identified as corn, for
many applications, it would be desirable for pixel 2608 to be
identified as soybeans.

Returning to process 2500, a boundary map can be used
to constrain classification results so that, given a statistic or
set of statistics associated with a given pixel in a time series,
the results will be uniform over a field. For certain types of
data (e.g., used in a field classification), each pixel within a
field (e.g., sharing the same field ID) can vote for the value
that should be applied to the field as a whole. So, for
example, if 95% of the pixels within a field are classified as
soybeans, and 5% are corn (or other classifications) at 2504,
all pixels within the field boundaries can be classified as
soybeans at 2506.

Other kinds of analysis can also be performed in accor-
dance with process 2500 and process 2500 can be adapted as
applicable. As one example, statistics such as rate of growth
may be computed, per pixel, for the time series at 2504. And,
at 2506, the average value can be determined across all
pixels within each field.

Classifier 1222 can generate a variety of different types of
output at 2508 as applicable. For example, classifier 1222

can generate a classification map (e.g., in GeoTIFF format)
which identifies, at each pixel in the image, a numeric value
corresponding to the land use classification determined by
the classifier. In various embodiments, classifier 1222 is
trained using up to 256 classes (covered by an unsigned 8-bit
integer) with, for example, “01” representing corn, “02”
representing soybeans, “03” representing wheat, “04” rep-
resenting evergreen trees, etc.

Classifier 1222 can also generate, for each/arbitrary clas-
sifications, a binary mask (e.g., corn mask indicating
whether a given pixel is corn (value=1) or not (value=0); a
soybean mask indicating whether a given pixel is soybeans
(value=1) or not (value=0); etc.). As another example,
instead of (or in addition to) conclusively assigning a
particular label (“01”) to a given pixel, classifier 1222
generates a probability (or confidence) that a particular pixel
is a given classification. In this scenario, the land covered by
an arbitrary pixel might be 78% likely to be corn
(corn=0.78), 15% likely to be soybeans (soybeans=0.15),
4% likely to be wheat (wheat=0.04), etc. In this scenario,
classifier 1222 can optionally select as a classification for the
pixel the land use that has the highest score (subject to a
threshold, such as 40% confidence). As yet another example
of output that can be generated at 2508, classifier 1222 can
store (e.g., in a table or other appropriate data structure) a
classification for a given field ID, without (or in addition to)
generating a classification map. (E.g., with an arbitrary field
identified as fieldID=233982 having a classification of “02”
and another field identified as fieldID=233983 having a
classification of “01”).

The output of classifier 1222 can also be consumed by
other processes/components of platform 1202 for a variety
of purposes. As one example, yield predictor 1226 (a script
or set of scripts) can take as input classification data (from
classifier 1222) and additional data such as rainfall/sunlight,
and light curve information for a given region, to generate
yield estimates for the region (e.g., using a model 1228
trained using historical information).

FIG. 25B illustrates an example of a process for enhanc-
ing a classification using a boundary map. In various
embodiments, process 2550 is performed by classifier 1222.
The process begins at 2552 when data to be classified, and
a boundary map, are received. One example of the data
received at 2552 is a time series depicting the region shown
in FIG. 15A across a time window such as a month, or a year.

At 2554, a boundary map is used to constrain the values
that will be input into classifier 1222. As one example, at
2554, for each image in the time series received at 2552, the
average value across all pixels within a particular field is set
as the value for each pixel within the field. Suppose, for a
single image in a time series of images, pixel 2606 has a
green channel value of 0.90, pixel 2608 has a green channel
value of 0.60, and pixel 2610 has a green channel value of
0.80. At 2554, a green channel value of 0.77 will be set for
all three pixels (2606, 2608, and 2610), prior to being
provided to classifier 1222. Average values for other chan-
nels will similarly be applied to pixels 2606, 2608, and 2610.
(It is to be noted that the average value will be taken across
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all pixels within a given field, not just pixels 2606, 2608, and
2610. Values for the remaining pixels have been omitted for
simplicity.)

At 2556, classifier 1222 classifies the results of the
processing performed at 2554. Specifically, classifier 1222
will operate on the average value for each pixel in a given
field, across the time series. As with process 2500, other
kinds of analysis can also be performed in accordance with
process 2550 and process 2550 can be adapted as applicable.
And, as with process 2500, classifier 1222 can generate a
variety of different types of output at 2558 as applicable,
including classification maps, tables of classifications, etc.

FIG. 27A illustrates an example of a portion of land
classified without use of a boundary map (e.g., using clas-
sifier 1222 on a time series of data without using a boundary
map). As seen at 2702, a single pixel (or small set of pixels)
has been classified as one type of crop in classification map
2700, but is surrounded by pixels classified as a second type
of crop (in region 2704). FIG. 27B illustrates an example of
a boundary map for the scene depicted in FIG. 27A. Bound-
ary map 2710 is an example of a map that can be produced
in accordance with process 1800. As shown in FIG. 27B,
region 2706 is a single field. FIG. 27C illustrates an example
result where the time series data used to produce the
classification map 2700 and boundary map 2710 are both
provided to classifier 1222. As shown in FIG. 27C, all pixels
in region 2708 are classified as the same crop. FIG. 27C
depicts a classification map, which is an example of output
producible using either process 2500 or 2550 (at 2508 or
2558).

V. Iterative Relabeling Using Spectral
Neighborhoods

As mentioned above, suppose FIG. 24 depicts a typical
progression of the growth of corn (2402) and soybeans
(2404) over a growing season in a particular region. In some
years, however, growth may progress differently. For
example, in a particularly wet spring, crops may be planted
later. Further, early season water stress may cause corn to
look like soybeans to a classifier. In a particularly warm
spring, crops may be planted earlier, and soybeans may look
more like corn to a classifier. Accordingly, the curves shown
in FIG. 24 (reproduced in FIGS. 28 as 2402 and 2404 to aid
in understanding) may be shifted in time (as curve 2802 and
curve 2804, respectively), or have different shapes. A model
trained using curves 2402 and 2404 may have difficulty
classifying data obtained during a year that curves 2802 and
2804 are observed. Note, for example, at times 2806 and
2808, pixels from multiple curves overlap. In contrast,
curves 2402 and 2404 (as shown in FIG. 24) are largely
separate, with only portion 2406 overlapping. Accordingly,
identifying a particular pixel at 2806 or 2808 as being a
particular crop will be more challenging than in a year where
crop growth occurs similarly to what is depicted in FIG. 24,
particularly at a boundary between the two crops (e.g., crops
along the boundary of fields 2602 and 2604).

Regardless of what happened during a given growing
season, there will exist certain days that there is a clear
spectral separation between the corn and soybean crops
(e.g., the red and near infrared brightness will be signifi-
cantly different for corn crops and for soybean crops in a
given region).

FIG. 29 illustrates an observation of a particular portion
of Iowa on a particular day in July (e.g., July 5) at a
particular time (e.g., noon). Corn (2902) and soybeans
(2904) are well separated in the image.

FIG. 30 is a corner plot (also referred to herein as a
triangle plot), of every pixel in the image shown in FIG. 29.
In particular, FIG. 30 shows, for each of the different
spectral bands present in image 2900, a scatter plot of the
brightness value of each pixel for one spectral band against
the brightness value for that pixel for a different spectral
band. As one example, box 3002 plots each pixel by using
its red value as an X coordinate and its SWIR 2 value as a
Y coordinate. As seen in FIG. 30, one group of pixels clumps
in region 3004 (and will ultimately be revealed as corn
pixels) and one group of pixels clumps in region 3006 (and
will ultimately be revealed as soybean pixels). Other boxes,
such as box 3008 (which plots SWIR 1 against red), and box
3010 (which plots SWIR 1 against near infrared) evidence
similar clumping. Edge boxes 3014-3020 are histograms
collapsing the distribution of pixels in a given dimension.
Box 3018 indicates a particularly strong separation in each
of plots 3008, 3010, and 3012 (as evidenced by the two
distinct humps in box 3018).

FIG. 31 illustrates an example of a process for refining a
classification. In various embodiments, process 3100 is
performed by iterative labeler 1230. One example way to
implement iterative labeler 1230 is (as with other compo-
nents of platform 1202) to use a combination of python
scripts and libraries (e.g., NumPy, sciPy, scikit-learn). The
process begins at 3102 when data to be classified is received.
In the following example, suppose a single image (e.g.,
image 2900) is received at 3102. As will be described in
more detail below, multiple images can also be received at
3102.

At 3104, an initial label is determined for each pixel in the
image received at 3102. As one example, at 3104, classifier
1222 can be used to classify (label) each pixel in the image
received at 3102 (e.g., with a given pixel being assigned a
“01,” “02,” “03,” etc. as described in more detail above). In
various embodiments, the initial labels for the image are
stored as a NumPy array.

The initial labeling can be performed using embodiments
of processes 2500 or 2550, and can also be performed by
classifier 1222 without using a boundary map. As another
example, use of classifier 1222 can be omitted at 3104 and
an initial classification obtained in another way. As one
example, where available, historical classification of land
corresponding to the image (e.g., a CropScape—Cropland
Data Layer) can be used as an initial classification. As
another example, a third party classification service (e.g.,
using Mechanical Turk, etc.) can provide the initial labels at
3104 (e.g., manually). Further, in various embodiments,
only some of the pixels receive initial labels at 3104 (e.g.,
where a confidence in the initial label is below a threshold,
where some of the data provided by CropScape is missing,
where manual classification is missing, etc.). In the example
of FIG. 29, suppose all of the pixels are initially labeled at
3104 as either 01 (corn) or 02 (soybeans). In other scenes,
other/additional labels would also/instead be used in con-
junction with process 3100. For example, in a scene with
four kinds of land cover, the initial labels assigned to the
pixels in the scene at 3104 could be 01 (corn), 03 (wheat),
42 (lumber), and 88 (millet).

Each pixel can be located in an n-dimensional spectral
space, where n is the number of spectral bands included in
the image. The coordinates of the pixel in the n-dimensional
space are specified by the spectral band measurements
associated with the pixel. Each pixel has a set of nearest
spectral neighbors—a set of pixels that are the closest
Euclidian distance in the n-dimensional space to the pixel.
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At 3106, each pixel’s current label is replaced with a label
determined by a majority vote of its N-nearest spectral
neighbors’ labels. In particular, if the majority vote label is
different from the pixel’s current label, the majority vote
label is saved for the pixel in the

NumPy array. As one example, suppose five bands of
spectral information are available in a given image for a
given pixel. The pixel will be assigned the majority vote of
the labels of the nearest N neighbors that are the closest
Euclidian distance in 5-dimensional space to the pixel. One
way to determine the nearest neighbor of a given pixel (e.g.,
in a 5-dimensional space) is to use a k-d tree. The value of
N is configurable. One example value for N is 30 (i.e., 30
nearest spectral neighbors).

Portion 3106 of process 3100 can optionally be iterated
(at 3108) until convergence. Convergence happens once the
rate of change of pixel label values over successive repeti-
tions falls below a threshold. To ensure that process 3100
ends, an upper bound on the number of iterations that can be
performed (irrespective of convergence), such as six itera-
tions, can be employed. FIGS. 32 and 33 illustrate, respec-
tively, the results of two iterations of portion 3106 of process
3100 with respect to the image shown in FIG. 29. In the first
iteration (the results of which are shown in FIG. 32), 29.7%
of the pixels have had their initial labels changed. In the
second iteration (the results of which are shown in FIG. 33),
only 4.7% of the pixels’ labels changed.

Other machine learning approaches can also be used at
3106 (and, as applicable at 3108), instead of nearest neigh-
bor. For example, a random forest can be trained using the
initial labels, and the initial labels can be refined at 3106 by
applying the trained random forest to the labels.

As with classifier 1222, iterative labeler 1230 can gener-
ate a variety of types of output at 3110, as applicable. For
example, iterative labeler 1230 can generate a classification
map (e.g., in GeoTIFF format) which identifies, at each pixel
in the image, a numeric value corresponding to the land use
classification determined by the classifier (e.g., “01” being
corn, “02” being soybeans, “03” being wheat, etc.). And, as
with the output of classifier 1222, the output generated at
3110 can also be consumed by other processes/components
of platform 1202 for a variety of purposes. As one example,
yield predictor 1226 (a script or set of scripts) can take as
input the output generated at 3110 and additional data such
as rainfall/sunlight, and light curve information for a given
region, to generate yield estimates for the region (e.g., using
a model 1228 trained using historical information). As
another example, the output of process 3100 can be provided
as input, along with a boundary map, to an embodiment of
process 2500 (e.g., where the process starts at 2506 and the
boundary map is used to refine the classification determined
in accordance with process 3100).

Process 3100 has thus far been described in the context of
a single image being received at 3102. In various embodi-
ments, multiple images are received at 3102. In a first case,
multiple images in a time series are received at 3102 (e.g.,
a set of twelve images of the same scene, in a time series, is
received at 3102). In the first case, each image is separately
processed in accordance with portions 3102-3110 of process
3100. A final label can be determined, for each pixel in the
scene, by combining the labels provided by each of the
individual outputs for each of the images in the time series.
As one example, a majority vote can be used. As another
example, the vote of each image for a given pixel can be
weighted by how quickly convergence occurred. The speed
of convergence can be measured by counting the number of
repetitions of portion 3106 that take place before conver-

gence. A faster convergence is indicative of better separation
(i.e., an observation on a day when different crops are easier
to differentiate from one another, such as a very clear day,
and/or a day later in the growing season). FIG. 34 illustrates
the speed with which convergence occurred when process
3100 was performed using the scene depicted in FIG. 29. As
indicated in FIG. 34, observations earlier in the year will
tend to take longer to converge (3402) and can be assigned
a lower weight, and observations later in the year will tend
to take less time to converge (3404) and can be assigned a
higher weight.

In a second case, multiple observations of the same scene,
at the same approximate time, but from different sources can
also be combined. As one example, an observation of the
scene depicted in FIG. 29 could be made by multiple of
Landsat, RapidEye, SENTINEL-2, and SENTINEL-1. After
initial processing (e.g., by elements 1208 and 1210) by
platform 1202 to obtain images of the scene depicted in FIG.
29 in the appropriate (directly comparable) size/format, each
of the scenes as obtained from each of the different obser-
vational sources can be processed in accordance with pro-
cess 3100. A final label can be determined, for each pixel in
the scene, by combining the labels determined for each of
the respective observations of the scene. As one example, a
majority vote can be used. As another example, the vote of
each sensor can be weighted (e.g., based on convergence
speed, based on an explicit preference for one sensor over
another, etc.) as applicable.

VI. Additional Example Applications

A. Correcting Artifacts, Upsampling Images, and
Denoising Images

Boundary maps, such as those that can be created using
embodiments of process 1800, can be used to improve land
use classification results (e.g., as explained in conjunction
with FIGS. 25A and 25B). Boundary maps (whether made in
accordance with embodiments of process 1800 or otherwise
provided, e.g., as CLU data) can also be used in other
applications to improve other kinds of results. Examples of
such other applications include correcting artifacts such as
scanline correction errors, upsampling images, and denois-
ing images.

FIG. 35A depicts a Landsat 7 image that includes (as
diagonal black lines) scanline correction artifacts. FIG. 36A
depicts a portion of a MODIS observation. FIG. 38B depicts
a noisy observation by SENTINEL-1 of a portion of land.
FIGS. 35B, 36B, and 39 respectively depict boundary maps
corresponding to the images shown in FIGS. 35A, 36A, and
38B. In each case, the captured observational data can be
improved by performing an embodiment of process 3700
using the respective boundary map.

FIG. 37 illustrates an embodiment of a process for
enhancing an image using a boundary map. In various
embodiments, process 3700 is performed by image enhancer
1232. One example way to implement image enhancer 1232
is as a set of Python scripts incorporating the open-source
libraries NumPy and SciPy. The process begins at 3702
when an image to be enhanced and a corresponding bound-
ary map are received. As a first example, suppose that at
3702, image 3500 and boundary map 3530 are received. At
3704, a field value array is constructed, using the boundary
map and the received image. The field value array is an array
of deques, and is created by iterating over pixels in the
received image, appending a given pixel’s value to the
appropriate field. At 3706, the values (extracted from the
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received image) are aggregated per field. A variety of
aggregation techniques can be used, examples of which
include determining the mean pixel value, the median pixel
value, or a mode. As previously explained, for pixels where
no data is present, a NaN value can be supplied (e.g., during
ingestion), so that operations such as taking a median or
mean are not impacted by the presence of zero values. The
values determined at 3706 are used to perform, at 3708, a
rerasterization operation, resulting in an enhanced image
where each pixel in a field in the enhanced image has the
same value as the rest of the pixels in the same field. As with
various other examples provided throughout the Specifica-
tion, where the image received at 3702 is multi-spectral,
multiple values for a pixel can be operated on throughout
process 3700 as applicable.

FIG. 35C illustrates a result of providing image 3500 and
boundary map 3530 as input to process 3700. In particular,
regularizing the pixel brightness values across the pixels
bounded by a given field (e.g., using the median value) has
in-painted the black stripes of missing data in the original
image.

FIG. 36B depicts a boundary map (created in accordance
with process 1800) for a portion of land, rasterized to 30 m
resolution. FIG. 36A depicts a corresponding MODIS obser-
vation of the same portion of land that is represented by
boundary map 3630. The MODIS observation (240m reso-
lution) has been upsampled so that both image 3600 and
boundary map 3630 are the same size (e.g., with 2048×2048
pixels representing 30 m×30 m of ground in both cases).
FIG. 36C illustrates a result of providing image 3600 and
boundary map 3630 as input to process 3700. In particular,
regularizing the pixel brightness values across the pixels
bounded by a given field (e.g., using the median value) has
resulted in a resolution-enhanced version of image 3600.

Process 3700 can similarly be used to de-noise image
3850 (using boundary map 3900), resulting in an image such
as image 41A. As will be described in more detail below,
alternate approaches to denoising images can also be used.

B. Additional Denoising Embodiments

Noise in images is an obstacle to many kinds of image
processing. This is especially true of automated processing,
as it can be challenging for computer algorithms to extract
image features amidst substantial noise as easily as humans
can. A fundamental challenge is to remove noise without
also removing essential image characteristics. Much of the
information content of an image is contained in the image’s
edges. Accordingly, a technique that will preserve edges in
the course of removing noise will be beneficial.

One source of input to platform 1202 is SENTINEL-1
data. SENTINEL-1provides synthetic aperture radar (SAR)
imagery. Benefits of SAR imagery include that it is cloud-
free, and also that it can be continuously collected (including
at night). One drawback of SAR imagery is that it can be
very noisy. FIG. 38A shows an example of a processed
SENTINEL-1A image (UTM tile 15N_004_075 (Carroll,
IA), taken Sep. 11, 2015), with each side of the image
representing a distance of approximately 60 km. In the
example shown in FIG. 38A, the first channel is the VH
polarization, the second channel is the VV polarization, and
a third channel has been added using

VV - VH

VV + VH
.

FIG. 38B shows a zoom into FIG. 38A, with each side of the
image representing a distance of approximately 900 m. FIG.
39 illustrates an example of a boundary map that corre-
sponds to the portion of land depicted in FIG. 38B. The
following are two example approaches to using boundary
maps (whether generated in accordance with an embodiment
of process 1800, or otherwise obtained, e.g., as governmen-
tal CLU data) to assist in image denoising.

1. First Approach

One approach to using a boundary map such as boundary
map 3900 to reduce noise in an image such as image 38B is
shown in FIG. 40 and is an embodiment of process 3700. In
various embodiments, process 4000 is performed by
denoiser 1234. One example way to implement denoiser
1234 is as a set of Python scripts incorporating the open-
source libraries NumPy and SciPy. The process begins at
4002 when an image to be denoised (e.g., image 3850) and
a boundary map (e.g., boundary map 3900) are received. At
4004, for each field in the boundary map, a regularized value
(or set of values, where data for multiple spectral bands is
present at each pixel) is determined using pixels in the
received image that are located within the field. An image
comprising the constrained values is generated as output at
4006. As one example of the processing that can be per-
formed at 4004, a mean value (or set of values, where the
image is multi-spectral) can be determined across the pixels
in the received image that correspond to a given field in the
boundary map. The noise distribution of SAR often has
outliers. Accordingly, instead of a mean value, a median
value can also be used (e.g., to reduce the impact of outlier
pixel values in the received image). FIG. 41A depicts a result
of regularizing the pixels in FIG. 38B using a field-wise
median value. FIG. 41B depicts a result of regularizing the
pixels in FIG. 38B using the field-wise mean of the loga-
rithm of the pixel values (per the multiplicative Gaussian
model). The results shown in FIGS. 41A and 41B are not
identical but are both similar and reasonable ways to reduce
SAR noise.

2. Second Approach (Mumford-Shah)

One drawback to the first approach is that sometimes
using a single value (or set of values in the case of multi-
spectral information) for every pixel within a field may not
be appropriate. Sub-field information (which might be of
interest) can be lost using the first approach. Another draw-
back to the first approach is that problems with the boundary
map can be propagated unnecessarily into the final result. In
particular, an undersegmented boundary map can lead to
uniform regions that should not be made uniform. One
reason a boundary map may be undersegmented is due to
limitations when the map was created (e.g., excessive
clouds). Another reason a boundary map may be underseg-
mented is due to changes in land use since the boundary map
was created (e.g., a field traditionally used for one crop is
subsequently split in half). Accordingly, while a boundary
map can be very beneficial in various applications, they do
sometimes contain imperfections. Accordingly, approaches
that can preserve differences (if present) within a given field
can also be beneficial, for various applications.

The Mumford-Shah functional can be used as a denoising
approach to image processing and seeks the simultaneously
refined or denoised image estimate, and a set of edges within
the image. Suppose ù is a noisy image defined on Ω. An
image u and an edge-set Γ are sought:
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m	

u�Γ Ω\Γ

∇u2 + λ
2
Ω

u - f 2 + μℋ(Γ).

The regularization of u is turned off at edge-set Γ, which
prevents the regularization from blurring the edges, and
allows the regularization to be concentrated inside those
edges, away from Γ. One drawback to using Mumford-Shah
(generally) is that determining edge-set Γ can be challeng-
ing. That drawback can be mitigated, however, where edge
data is already known. A boundary map (whether generated
at 1800, or otherwise obtained, such as from CLU data) can
be used as an approximate source of edge-set Γ. Depending
on the imagery and process that was used to produce the
boundary map, the map may or may not assign pixels to
edges. Where the boundary map does assign pixels to edges,
the set of pixels labeled as an edge comprises the edge map
that can be used to assist the denoising. In other cases (e.g.,
CLU rasters, which do not assign pixels to edges), adjacent
fields may occupy adjacent pixels with no edge between
them. An edge map can be produced (e.g., from an edgeless
raster) by computing the gradient, and assigning places
where the gradient is nonzero as edges. In some embodi-
ments, an edge map is created from an edgeless raster at a
3 m esolution, the edges are dilated to 10 pixels thick, and
then a downsampling is performed to a 30 m resolution.
Further, gdal_rasterize can be used at a higher resolution,
then downsampled to a desired resolution, resulting in better
preservation of details than using gdal_rasterize at the
desired resolution.

a. Penalty Functional

The pixel values of a satellite image can be regarded as
samples of an underlying function ù(x, y), defined at every
point on the ground contained within the image. Let I be the
set of such points, and let E be the set of points determined
to belong to an edge. Then the approach amounts to mini-
mizing the following functional:

F(u) =
1

p

I\E

∇up +
λ
2

I

u - f 2. (8)

The scalar factors are adjusted for convenience. The first
term puts a substantial penalty on u being noisy, but without
penalizing changes that happen across edges. A variety of
values of regularization exponent p can be used, and a value
of p that is less than 2 will help prevent too much smoothing
inside of fields. The smaller the value of the exponent p , the
more tolerant the approach becomes of having large contrast
changes. Using a p that is less than or equal to 1 will help
preserve edges that are missing from the boundary map.
Where p is set to 1, this is a total-variation regularization, but
with the total-variation diffusion turned off at edges. Using
a p less than 1 will result in sharper non-field edges and
better contrast preservation.

The second term enforces fidelity between the result and
the input noisy image ù. The degree that it does so is
governed by the value of the parameter λ.

b. Discretized Version

For images, the points (x, y) are only defined at discrete
points { 1x, x2, . . . , xM} and { y1, y2, . . . , yN} . An
approximation

∇ f (x� y) =
∂ f

∂ x
(x� y)�

∂ f

∂ y
(x� y)

can be made using finite differences:

∂ f

∂ x
(xi y j) ≈ f (xi+� y j)- f (xi y j) = Dx f (xi y j)

(9)

∂ f

∂ y
(xi� y j) ≈ f (xi� y j+�)- f (xi� y j) = Dy f (xi� y j).

(��)

For i=M or j=N, Neumann boundary conditions can be
used, assigning Dxù(xM=0=Dyù(xi, yN). A construction of
Dx, Dy as matrices can be made, so that when an image’s
pixel values are stored in a vector, the matrix-vector product
gives the desired finite difference. The edge masking process
can be incorporated by zeroing out the rows of Dx and Dy

that contain an edge-pixel term.
The finite difference operators Dx, Dy are implemented

using sparse matrices, so that the “differentiation” process
consists of reshaping an image ù into a vector, multiplying
by the appropriate matrix, then reshaping back into an
image. The construction of the sparse matrices is as follows.
First, one-dimensional finite differencing (with Neumann
boundary conditions) of a vector with K components is
obtained with the following matrix:

BK =

-1 1 0 0 … 0

0 -1 1 0 … 0

⋮ ⋱ ⋱ ⋮

0 … 0 -1 1 0

0 … 0 0 -1 1

0 … 0 0 0 0

.

Accounting for the location of indices to correspond to
differentiation with respect to x or y is accomplished using
Kronecker products (cf.numpy.kron). If IL denotes the L×L
identity matrix, then for use with M×N×L images,

Dx=(IM^BN)^IL,

Dy=(BM^IN)^IL.

This produces matrices that are (MNL)×(MNL) in size.
They are constructed so that if ù is an M×N×L image,
unwinding the pixel values of ù into a vector, multiplying
this vector by the matrix, and then reshaping the product
back into an image will give the desired finite-difference
derivative.

The discretized form of (8) can be stated as follows:

F(u) =
1

p

i

(Dxu)i2 + (Dxu)i
2p/2 + �

2

i

(ui - fi)2.
(11)

Here u and ù are vectors with M×N components.

c. Solution Criterion

Following standard calculus practice, (11) can be differ-
entiated and set equal to zero. For any given u , define the
diagonal matrix Q(u) as follows:

Q(u)ii=[(Dxu)i
2+(Dxu)i

2]p−2. (12)
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Then the derivative equation becomes:

Dx
TQ(u)Dxu+Dy

TQ(u)Dyu+λ(u−ù)=0 (13)

d. Lagged Diffusivity

The dependence of Q(u) on u makes (13) highly nonlinear
and difficult to solve. One approach is to instead solve an
iteration of successively more accurate linear approxima-
tions. Given a solution estimate un, use it to fix Q, and then
solve for the following iterate:

[Dx
TQ(un)Dx+Dy

TQ(un)Dy+λI]un+1=λù. (14)

Once the values of un stop changing much (typically after
5 or 10 iterations), the obtained u can be treated as the
minimizer of (11). Reshaping from a vector back into an
image gives a resultant denoised image.

FIGS. 42A and 42B illustrate example results of denois-
ing FIG. 38B in accordance with techniques described
herein. In the example depicted in FIG. 42A, the values of
regularization exponent p=1 and regularization parameter
λ=1.0 were used. In the example depicted in FIG. 42B, the
values of p=1 and λ=0.1 were used. Weaker regularization
gives a realistic-looking result (e.g., preserving textures
within fields). Stronger regularization approximates the uni-
form-field result, while allowing non-field edges.

FIGS. 43A and 43B illustrate example results of denois-
ing FIG. 38B in accordance with techniques described
herein. FIGS. 43A and 43B allow for the direct comparison
of results when edge assistance is used or not. In FIG. 43A,
regularization parameter λ=1.0 was used, with an edge set.
In FIG. 43B, regularization parameter λ=1.0 was also used,
but without an edge set (resulting in blurred features).

FIGS. 44A and 44B illustrate example results of denois-
ing FIG. 38B in accordance with techniques described
herein. FIGS. 44A and 44B allow for the direct comparison
of results when edge assistance is used or not. In FIG. 44A,
regularization parameter λ=0.1 was used, with an edge set.
In FIG. 44B, regularization parameter λ=0.1 was also used,
but without an edge set (resulting in blurred features).

FIGS. 45A and 45B illustrate example results of denois-
ing FIG. 38B in accordance with techniques described
herein. In the example depicted in FIG. 45A, the value of
regularization exponent p=1 was used. In the example
depicted in FIG. 45B, the value of p=0.25 was used. Using
a p<1 gives sharper non-field edges, and preserves contrast
better.

VII. Sparse Phase Unwrapping

A. Introduction

A variety of applications use the phase of a wave or a
complex-valued image to derive useful information. One
example is interferometric synthetic aperture radar (InSAR),
where the interferometric phase measures deformations of
the Earth’s surface (e.g., due to mining or natural phenom-
ena). Other examples of applications include magnetic reso-
nance imaging where the phase of the reconstructed image
can provide a measurement of blood flow velocity, and laser
interferometry of thin films where the interferometric phase
gives a measurement of surface velocity and changes in the
refractive index. As will be described in more detail below,
techniques described herein can be used in these and other
applications to unwrap associated phase images.

One definition of “resolution” as it relates to satellite-
based imagery is approximately wavelength divided by

aperture. For optical systems, a typical value of the wave-
length is a few hundred nanometers, and a typical aperture
value is approximately one meter. This gives a resolution of
approximately one meter at 1000 kilometers. Radar has the
benefit that it is emitted from the satellite, and (in contrast
with optical systems) does not require sunshine or clear
skies to make observations of the earth. In radar-based
systems, the wavelength is hundreds of thousands of times
longer than for optical-based systems, and a conventionally
defined resolution would be unusable. With synthetic aper-
ture radar (SAR), the motion of the satellite is used to
synthesize a larger aperture and thus achieve a much higher
resolution. SAR images include phase per pixel, and inter-
ferometric SAR (InSAR) looks at the interferometric phase,
or pixel-by-pixel phase difference, of two SAR images that
have been co-registered.

One example use of InSAR is in detecting deformations
of the Earth’s surface. As an example, volcanic activity often
leads to displacements of the Earth’s surface. Such displace-
ments are often too small to be seen with optical imagery,
but, under the right conditions, can be measured using
InSAR. To begin, a satellite makes a pass over an area while
emitting microwaves. A SAR image is formed by assigning
to each pixel the strength of the reflected signal from the
corresponding patch of ground. In addition, each pixel has
the phase of the reflected signal, which provides partial
information about the distance between the satellite and the
pixel during the collection. A second SAR image is collected
at a later time. By overlaying, or co-registering, the two
images and plotting the per-pixel phase difference, the
surface deformation occurring between the collections of the
two images can be observed. In this context, “phase” is the
fractional part of a whole wavelength in the change in
roundtrip distance between the radar and the scatters in a
pixel and is measured in radians from -π to π.

FIG. 46A illustrates an example of phase from a single
SAR collection. The data appear to be nearly random, and
there are several reasons for this. Distances between the
satellite and adjacent pixels differ by hundreds of wave-
lengths, and the fractional piece of that difference is nearly
random. In addition, the phase also reflects the way micro-
waves bounced off of the particular objects and surfaces in
he pixel. Finally, there are atmospheric effects that vary
slowly from pixel to pixel, but are uncorrelated from one
collection to the next.

If FIG. 46B illustrates the difference in phase from two
SAR collections. The scattering process within each pixel is
largely the same between collects, and this nearly random
effect is removed in the difference. What remains are phase
fringes that largely reflect the differences in distance due to
slight offsets between the orbits for the two collections. This
difference in orbit between the two collections can be
corrected for if sufficient detailed knowledge of the terrain
(e.g., via a digital elevation model) and orbits is known.
Atmospheric moisture’s impact on phase can be corrected
for with appropriate spatial and temporal filtering. After
correcting for orbital offset and applicable atmospheric
moisture, the relative phase shows deformation. FIG. 46C
illustrates relative phase after correcting for orbital offset. In
particular, FIG. 46C depicts a 15 km by 15 km look at a part
of Mexico City between November 2017 and August 2018.
Each fringe shows where the round trip distance increased
by a whole wavelength, i.e., where the ground sank by
approximately 2.5 cm. Counting phase fringes is also
referred to as “unwrapping” and is described in more detail
below. FIG. 46D depicts the same 15 km by 15 km look at
Mexico City, but between September 2015 and August 2018.
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The phase fringes are much closer together than those shown
in FIG. 46C and will make an effective unwrapping difficult.
Known subsidence rates suggest that the depicted area sank
by roughly two feet between September 2015 and August
2018.

In interferometric SAR, an interferogram comprises mul-
tiple parts. The first part of an interferogram is the coher-
ence, also referred to as correlation. Coherence is the per-
pixel measurement of how similar two SAR collections are
in a region around a given pixel. Coherence is also a good
indicator for where phase is stable enough to be unwrapped.
Phase is the fractional difference in wavelength per pixel
between two collections. The difference is reported from −π
to πWhen the phase exceeds π, it wraps around to −πWhen
the phase reduces below −π, it wraps around to π.

FIG. 47A illustrates phase from an example interferogram
from a pair of collections made during descending passes
over the Kilauea volcano. The fringes indicate large areas
shifting along the satellite’s line of sight between the two
collections. The first collection occurred on Apr. 23, 2018,
and the second collection occurred 12 days later on May 5,
2018. The wavelength of SENTINEL-1, which was used to
make these collections, is roughly 5 cm, and so a change in
roundtrip distance of 5 cm between the collections, or a
surface deformation of half that, will correspond to a phase
shift of a whole wavelength, which appears as a single fringe
in this image. There are four fringes in the left feature,
suggesting that the deformation is 10 cm at the middle of the
fringes.

While InSAR is a powerful technique, it also has certain
subtleties. First, SAR systems cannot image the ground by
looking directly downward and, instead, view the ground at
a slant that is largely perpendicular to the direction of flight.
In FIG. 47A, the collections were taken while the satellite
was looking West at the island. In FIG. 47B, the collections
were taken during roughly the same time period while the
satellite was looking East at the island. Note that the fringes
near the volcano (in the upper left corner of FIG. 47A)
vanish and the remaining fringes have shifted in location. By
combining the multiple InSAR images from different look
angles, a more complete understanding of surface deforma-
tion can be exposed.

Another important issue regarding InSAR is that phase
shift measurements require a fairly uniform deformation
over several hundred meters. Leaves on vegetation introduce
wavelength sized changes within each pixel resulting in a
phase measurement that can be too noisy to be of use. FIG.
48 shows a measure of the coherence between the collec-
tions used to form the interferogram in FIG. 47A. The areas
that are light are those where the phase measurement is
trustworthy. Outside of the high coherence areas the phase
in FIG. 47A becomes noisy, but it is important to bear in
mind that deformations could occur there as well even
though a phase measurement can’t be made.

In InSAR and other applications, one quantity of interest
can be termed an “absolute” phase, which can be given in
terms of a number of wavelengths as a measure of change in
distance from the observed object. Phase is often specified
as an angle in radians, making 27 π equivalent to one
wavelength. This “relative” phase is the fractional part of the
number of wavelengths. Relative phase corresponds to the
measurement not being able to distinguish between a phase
of 2 πand a phase of 0 (or between a phase of θ and θ−2 π,
for any angle θ); the phase wraps, just as adding 2 π to an
angle of the unit circle wraps around the circle to the same
point. The measurement identifies a point on the circle,
without indicating how many times the phase has gone

around the circle. Accordingly, without unwrapping the
phase, any two significantly different elevation changes
(e.g., due to a sinkhole or eruption) could share the same
relative phase and otherwise be indistinguishable. In order to
determine values that are not limited to an interval of length
2 π, the phase needs to be unwrapped.

B. Phase Unwrapping

1. Gradient Adjustment

A variety of approaches can be used to unwrap phase
images. One approach is to make use of gradient information
from the wrapped phase; this gradient should differ from the
gradient of the unwrapped phase only at pixels where
wrapping has occurred. Moreover, the gradient itself can be
an indicator of wrapping, as the discontinuity created by
wrapping will tend to result in gradients of large magnitude.

To formalize this notion, consider differences between
adjacent pixels, which can be modeled as discrete approxi-
mations of partial derivatives. Assuming that the wrapped
phase image is θ=θ(i, j), then define:

Dxθ(i,j)=θ(i, j+1)−θ(i, j) , Dyθ(i, j)=θ(i+1, j)−θ(i, j); (15)

i.e., the value at the next pixel minus the value at the current
pixel is used. Dxθ can be defined to be zero on the last
column, and Dyθ to be zero on the last row. If the wrapped
phase values are assumed to lie in the interval (−π, π], then
the partial derivatives lie in (−2 π, 2 π).

Consider a pair of adjacent pixels (i.e., side by side) lying
on opposite sides of a wrapping boundary. Since phase
values jump 2 π at a wrapping boundary, Dxθ can be
expected to be larger in magnitude in such a scenario as
compared to where both pixels are on the same side of the
wrapping boundary. If it is not known a priori where the
wrapping boundary lies, ?Dxθ?>π(or ?Dyθ?>π) can be used as
heuristics for identifying wrapping, as this characterizes the
property that ?Dxθ? (or ?Dyθ?) can be made smaller by adding
2 π to or subtracting 2 π from one of the phase values. This
motivates the following adjustment to the derivatives:

φx =  Dxθ i� Dxθ ≤ π�

Dxθ - 2πsign(Dxθ) i� Dxθ > π;

(16)

φy =
Dyθ �� Dyθ ≤ π�

Dyθ - 2πsign(Dyθ) �� Dyθ > π.

(17)

The result of this is to replace the gradient

Dθ =
Dxθ

Dyθ

with a vector field

φ =
φx
φy

,

with the property that ?ϕx? and ?ϕy? are both at most π

everywhere, with the expectation that ϕ
→

will more closely
match the gradient of the unwrapped phase.

2. Integration

Though it can be desirable to have a phase image Φ

having ϕ
→

as a gradient, it will often be the case that ϕ
→

is
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not the gradient of any image. For a vector field to be a
gradient is characterized by the property that the curl is
everywhere zero, where the curl of a two-dimensional vector
field

u =
ux

uy

is defined by

curl u
→

=Dxuy−Dyux. (18)

In the case of InSAR, it is common that ϕ
→

will have nonzero
curl at many pixels, often occurring in pairs of nearby pixels
with curls of opposite sign, also referred to as “residues.”

One approach is to find the image whose gradient is as

close as possible to ϕ
→

. This raises the issue of how to
measure closeness. One way is to use a Euclidean (or 2)
distance, resulting in the following optimization problem:

���
Φ

DΦ - φ
2

2
. (19)

Solving (19) is equivalent to solving the following linear
equation:

(Dx
TDx+Dy

TDy)Φ=Dx
Tϕx+Dy

Tϕy. (20)

If ϕ
→

is curl free, then the solution of (20) will have a

gradient that is exactly ϕ
→

. However, in the more realistic

case of ϕ
→

having nonzero curl at some if not many pixels,
the solution of (20) will typically have less dynamic range
than the true, unwrapped phase, with the influence of
residues having a global effect on the solution.

3. Sparse Integration

An alternative approach is to find Φ whose gradient

differs from ϕ
→

at as few pixels as possible. This amounts to
solving:

���
Φ

DΦ - φ
0
, (21)

where the 0 norm \·\0 counts the number of nonzero pixels.
Solving this problem directly is intractable, being NP-hard.
However, it is similar to the type of problem considered in
compressive sensing. This is because as Φ ranges over all

scalar fields, DΦ ranges over all vector fields Ψ
→

whose curl

is zero. By the substitution Ψ
→

=DΦ− ϕ
→

, (21) becomes:

� !

ψ
→

ψ"subject to curl ψ # -curl φ
→ (22)

Approaches used in compressive sensing (e.g., of finding
the sparsest solution to a measurement problem) can be
useful in solving (21). One solution approach is to replace
the 0 norm with one that is easier to minimize, yet often
gives the same solutions. The 1 norm can also be used, due

to its convexity. However, the use of nonconvex penalty
functions can be more effective in various applications.

4. Splitting

An alternating directions method of multipliers (ADMM)
approach, modified for the current problem, can be used in
various embodiments. In particular, a penalty function G0

can be used which is constructed to both promote sparsity

and be efficient to minimize. A new variable, w
→

, is intro-

duced, and the difference between it and DΦ− ϕ
→

is penal-

ized, also introducing a Lagrange multiplier Λ
→

:

min
Φ,w
→
G$w→ + 1

2
w→ - DΦ + φ→-Λ→

2

2

.
(2%)

Now, Φand w
→

are alternately solved for. At each iteration:

Fix w
→

and solve for Φ. This entails solving the following:

(Dx
TDx+Dy

TDy)Φ=Dx
T(wx+ϕx−Λx)+Dy

T(wy+ϕy−Λy) (24)

The derivative operators Dx, Dy are diagonalized by the
discrete cosine transform, which allows for the solving of
(23) using fast cosine transforms.

Fix Φ and solve for w
→

, which by construction of G0 is
given by the formula:

(25)

with x
→

=DΦ− ϕ
→

+ Λ
→

, and where operations are done pixel-

wise, with the result taken to be 0 where x
→

=0.

The Lagrange multiplier Λ
→

is updated by adding the

residual DΦ− ϕ
→

−w
→

. This uses the method of multipli-

ers to force w
→

and DΦ− ϕ
→

to converge together.
The approach described in this section is computationally

very efficient, with the fast cosine transforms dominating the
computational cost.

5. Code Example

FIG. 49 illustrates example code for implementing phase
unwrapping. The inputs include an estimated phase gradient
image (fx, fy), a regularization parameter lambda (e.g., value
1), a penalty function parameter p (e.g., value 0), a maxi-
mum number of iterations max_iter (e.g., value 100), a
convergence tolerance tol (e.g., value π/5), an acceleration
parameter c (e.g., value 1.6), differentiation operators Dx and
Dy, and a Fourier-domain Laplacian kernel K.

C. InSAR Examples and SNAPHU Comparison

The European Space Agency (ESA)’s SENTINEL-1 SAR
satellites collect single-look-complex (SLC) images, which
are distributed by ESA’s SciHub and by the Alaska Satellite
Facility. Using techniques described herein, such images can
be collected, stored (e.g., in storage 1212), and organized
into stacks where every image within a stack views roughly
the same area from roughly the same view angle.
GMT5SAR, or other appropriate tools, can be used to
co-register all of the complex collections into a common
range-azimuth coordinate system. In various embodiments,
the GMT5SAR tools are executed within instance groups of
virtual machines (VMs) on the Google Compute Engine

US 11,635,510 B1

45 46

5

10

15

20

25

30

35

40

45

50

55

60

65



(GCE). The techniques described herein can also be applied
to complex images from other SAR systems, such as Ter-
raSAR-X, and also adapted for use in other imaging prob-
lems as well.

Pairs of collections that are separated by sufficiently small
time intervals and have sufficiently close collection tracks
can be formed into interferograms. In various embodiments,
the approach described in Section VII.B above, e.g., as
implemented in Python, is used to unwrap the phase within
each such interferogram. These unwrapped phases can be
used as input to the GMT5SAR SBAS program, which
provides time-resolved surface deformations as output. The
SBAS program is also run on an instance group of VMs
within GCE. The time-resolved surface deformation data
can then be projected into latitude/longitude coordinates,
and made available for use in a variety of applications.

FIG. 50A depicts a wrapped interferogram phase for an
interferogram computed from a pair of SLC images from the
ESA SAR satellite SENTINEL 1-A, of a region including a
portion of Mexico City, taken on Sep. 25 and Nov. 12, 2016.
The interferogram coherence is depicted in FIG. 50B. Both
images are 12188×5287 pixels (in range-azimuth coordi-
nates).

One approach to unwrapping phase is to use SNAPHU, a
project distributed by ESA for use with their SENTINEL
Application Platform (SNAP), for use in processing InSAR
imagery from SENTINEL-1. The SNAPHU approach is
based upon a network-optimization approach to solving
(21), with additional application-specific customizations.

In an example process, the image data corresponding to
that depicted in FIGS. 50A and 50B was provided as input
to a Python implementation of the approach described in
Section VII.B.4 and run for 10 iterations on a Google Cloud
Platform virtual machine with 32 virtual CPUs and 120 GB
of RAM, taking 565 seconds to complete. The SNAPHU
approach was also used (implemented in C in the
GMT5SAR library), and run on the same virtual machine,
taking 4558 seconds (with parameters heavily optimized for
computational efficiency). Results of the two respective
processing are shown in FIGS. 51 and 52. In FIG. 51, the left
image is a result of phase unwrapping using techniques
described herein (e.g., in Section VII.B.4), and the right
image is a result of phase unwrapping using SNAPHU. FIG.
52 illustrates the difference between the unwrapped and
wrapped phase, using the techniques described herein (e.g.,
in Section VII.B.4) (left) and SNAPHU (right). The step-
function nature of the (nearly identical) residuals, particu-
larly in regions of high coherence, is as desired. The results
are nearly identical, meaning that the result using the
approach described herein (e.g., in Section VII.B.4) is of the
same quality, but obtained in a small fraction of the time.

Further, the techniques described herein (e.g., in Section
VII.B.4) give more reliable results over approaches such as
SNAPHU. When 100 interferograms of the same region, but
using pairs of SLC images collected at various times and
with the timespans between the two images varying between
12 and 744 days, it was found that in 73 of the 100 cases,
SNAPHU failed to converge in an allotted time period of
four hours. In contrast, using techniques described herein
(e.g., in Section VII.B.4) all unwrappings took between 475
and 581 seconds and produced meaningful output. An
example of a difficult case can been seen in FIG. 53. The left
image of FIG. 53 is a wrapped phase of an interferogram
using a pair of SLC images collected 744 days apart (on
Nov. 18, 2015 and Dec. 1, 2017). The right image of FIG.
53 is an unwrapped phase using techniques described herein

(e.g., in Section VII.B.4), with computation time under 10
minutes. SNAPHU failed to return a result after twelve
hours.

Additional examples of where SNAPHU struggles or fails
to unwrap, but the approach described herein (e.g., in
Section VII.B.4) succeeds follow. Each example contains
output from comparing two SAR collections and comprises
parts of an interferogram.

FIGS. 54A and 54B, FIGS. 55A and 55B, and FIGS. 56A
and 56B, respectively, are pairs of images depicting a
measure of the coherence, and phase, of an interferogram. A
small amount of deformation, and a moderate amount of
noise is represented in the data of FIGS. 54A and 54B. A
large amount of deformation and a fair amount of noise is
represented in the data of FIGS. 55A and 55B. A modest
amount of deformation and moderate amount of noise is
represented in the data of FIGS. 56A and 56B. Each pair of
images corresponds to a view of Mexico city, from the
satellite’s perspective. The satellite is traveling upward
slightly to the left in each image, while looking down and to
the right. One can see continuous edges in the phase in the
upper left of the scene depicted in FIGS. 54A and 54B,
where phase wrapping discontinuities are present—edges
where one side is white and the other side is black. One can
think of the task of unwrapping as treating these disconti-
nuities as contour lines for a topographic map, and the job
of unwrapping is to reconstruct the topography. Of particular
interest is the highly coherent area in the upper left in the
image.

Unfortunately, SNAPHU can fail to produce output for a
whole image if it encounters errors in any part(s) of the
image. SNAPHU fails to unwrap the interferogram repre-
sented in FIGS. 54A and 54B. SNAPHU fails to converge on
the interferogram represented in FIGS. 55A and 55B. SNA-
PHU is able to unwrap the interferogram represented in
FIGS. 56A and 56B, but takes a long time to do so. One
potential solution to situations where SNAPHU has prob-
lems is to crop the coherence and phase to a particular area
of interest. However, doing so would not be helpful in a
global computation where it is not known a priori what is
being looked for, and consequently it is desired to unwrap
the entire scene.

D. InSAR Pipeline Example

In various embodiments, platform 1202 provides an
InSAR pipeline 1236. In an example implementation of
InSAR pipeline 1236, two types of compute nodes are used.
The first, also referred to herein as a “medium” compute
node, is a Google Cloud Platform (GCP) n1-standard-32 (32
vCPUs, 120 GB of memory). The second, also referred to
herein as a “large” compute node, is an n1-highmem-64 (64
vCPUs, 416 GB of memory). InSAR pipeline 1236 uses a
pool of medium nodes and a pool of large nodes. When CPU
usage within a pool grows or shrinks beyond certain levels,
Google’s automatic scaling features can be used to add or
remove, respectively, compute nodes of the appropriate type
to/from the pool. Processing described as being performed
by InSAR pipeline 1236 can be implemented in a variety of
ways, InSAR pipeline 1236 makes use of a variety of
sources of data. The first is a set of single look complex
(SLC) images organized into stacks. As previously men-
tioned, SENTINEL-1 is an example source of SAR imagery.
SENTINEL-1 makes use of two satellites (SENTINEL-1A
and SENTINEL-1B) in a near-polar, sun-synchronous orbit,
with a 12-day repeat cycle and 175 orbits per cycle. Both
SENTINEL-1A and SENTINEL-1B share the same orbit
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with a 180° orbital phasing difference. SENTINEL-1 pro-
duces SLC images in the slant range by azimuth imaging
plane, in the image plane of satellite data acquisition. Each
image pixel is represented by a complex (I and Q) magnitude
value and contains both amplitude and phase information.
The imagery is geo-referenced using orbit and attitude data
from the satellite. Platform 1202 is configured to collect
SLCs (e.g., in accordance with image ingestion techniques
described above) and organize them into stacks, where
images in a given stack of SLCs correspond to observations
of a particular portion of the Earth, over time (e.g., in 12 day
observational increments). Each stack has a designated
reference SLC which defines a coordinate system for the
stack. Other SLCs included in the stack are co-registered to
the reference SLC for the stack. Which SLC in a given stack
should be selected as the reference SLC for that stack can be
performed arbitrarily (e.g., by selecting the earliest known
SLC for the stack to serve as the reference SLC for the stack,
by selecting an arbitrary twelve day period and designating
each SLC observed during that period as the reference for its
respective stack, etc.). Two additional types of information
used by the InSAR pipeline include SENTINEL-1 orbit data
(e.g., XML files provided by ESA that indicate velocity/
positional information for the SENTINEL satellites over
three days), and a digital elevation map (e.g., the Shuttle
RADAR Tomography Map).

2. Processing

InSAR pipeline 1236 leverages a GCP messaging tool
called Pub Sub (for publish/subscribe). One can publish a
message from a compute node to a topic, and that message
will persist even if the compute node goes offline. Subscrib-
ers can request outstanding messages for a topic. When a
subscriber receives a message, the subscriber can assess the
message and “acknowledge” it, thereby deleting the mes-
sage, or not, leaving the message for other subscribers to
process. InSAR pipeline 1236 uses one topic for its pool of
medium sized nodes and one topic for its pool of large
nodes. On startup, each compute node begins polling the
topic associated with the pool it is a member of for mes-
sages. Intermediate data products are stored in storage 1212.

Processing performed by InSAR pipeline 1236 can be
broken down into tasks. The life cycle of a task is as follows:

1. A message is published that describes a task to be
performed, the prerequisite data products for the task, and
the amount of vCPUs and memory that will be required for
the task.

2. A compute node requests an outstanding message and,
upon reading the message, determines if the prerequisite
data is available in storage 1212, and if that node has enough
vCPUs and memory free for the task. If not, the message is
left unacknowledged and will be picked up by another
compute node later.

3. If the compute node can run the task, it does so. When
the task has completed, any intermediate data is written back
to storage 1212.

4. The node acknowledges the message, thereby removing
it.

FIG. 57 illustrates an example of a process for generating
an unwrapped interferogram. In various embodiments, pro-
cess 5700 is performed by InSAR pipeline 1236. Process
5700 can be initiated in response to a variety of triggers,
including a user input (e.g., a user indicates an area of
interest or otherwise initiates process 5700 directly or indi-
rectly, such as via an interface). Process 5700 can also be
initiated in response to receipt of one or more new SLC files

(e.g., receipt by platform 1202 as part of a routine/scheduled
collection of new SLC files) or in any other appropriate
manner. Further, in various embodiments, various portions
of process 5700 are omitted, and in various embodiments,
various portions of process 5700 are performed multiple
times without repeating other portions of process 5700.

The process begins at 5702 when a reference SLC which
defines a coordinate system is retrieved. As one example, in
response to receiving an indication that a user would like to
compare observations of the stack including the 15×15
portion of Mexico City discussed in conjunction with FIGS.
46C and 46D, the reference SLC for the stack is retrieved at
5702. If no reference SLC for the stack was previously
selected, an arbitrary SLC can be selected to serve as the
reference SLC for the stack going forward (or other appro-
priate selection criteria can be used as applicable). As
another example of processing performed at 5702, whenever
a new SLC is received by platform 1202 (or, as part of a
batch processing operation), at 5702, the reference SLC for
the stack of which the newly received SLC is a member can
be retrieved at 5702.

At 5704, a digital elevation model (DEM) corresponding
to the reference SLC’s coordinate system is retrieved or
generated as applicable. Digital elevation data can be
obtained from a variety of sources, an example of which is
the U.S. Geological Survey’s National Elevation Dataset.
The first time process 5700 is performed with respect to a
given reference SLC, a DEM corresponding to the coordi-
nates of the reference SLC is generated (e.g., using the open
source tool, GMT5SAR) and stored. During subsequent
executions of process 5700 that make use of the reference
SLC, the DEM for the reference SLC can be retrieved (e.g.,
from storage 1212). If at some point the reference SLC for
a given stack is changed, a new DEM for the new reference
SLC is created at 5704 as applicable.

At 5706, one or more SLCs in the stack are co-registered
to the reference SLC (e.g., using GMT5SAR) so that all
co-registered SLCs share a common coordinate system.
Such co-registration can be performed for all SLCs in the
stack at 5706, or as applicable, performed only with respect
to certain of the SLCs (e.g., newly received SLCs, SLCs
designated of interest by a user, SLCs designated of interest
by a process, etc.).

At 5708, pairs of SLCs are chosen to use in forming
interferograms. The offset between the orbits of any two
SLC observations in a stack is also referred to as the
“baseline.” As baseline increases, phase information
degrades. Baseline analysis (e.g., using GMT5SAR) can be
used to pair SLCs having the smallest baseline (subject to
any additional applicable criteria, such as date constraints).
As one example of processing performed at 5708, baseline
analysis can be performed to pair SLCs observed before a
particular date of interest with SLCs observed after a par-
ticular date. In various embodiments, baseline analysis is
performed for each SLC (e.g., relative to the reference
SLC’s orbit) and stored (e.g., in storage 1212, at the time the
SLC is first processed by process 5700). The stored baseline
analysis can be retrieved and used in subsequent executions
of process 5700 (or portions thereof), e.g., to choose pairs of
SLCs meeting different criteria (e.g., different dates of
interest) without needing to perform baseline analysis again.

At 5710, an interferogram is formed for each of the pairs
chosen at 5708. An example way of generating an interfero-
gram is to use GMT5SAR. At 5712, the phase of each
interferogram generated at 5710 is unwrapped. Techniques
for efficiently and reliably unwrapping interferograms are
described above (e.g., in Section VII.B).
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Various results of process 5700 can be used in various
ways. As one example, due to the efficiency and reliability
of unwrapping techniques described herein, interferograms
can be globally generated (i.e., across all SLC stacks) and
stored in a catalog (e.g., catalog 5714 in storage 1212) or
other appropriate locations, in various formats (e.g., in the
SLC’s coordinate system, in a geographic coordinate system
such as UTM, or both). Global monitoring for surface
changes can be implemented, e.g., by comparing historic
information stored in the catalog to newly received SLC
information on a periodic basis (including for every newly
received SLC). Queries and alerting for particular deforma-
tions can be set up within platform 1202 using the catalog
(e.g., to generate an alert when a particular location has
subsided more than five meters from a previous observa-
tion). Detection of surface deformation can be valuable in a
variety of contexts, including initial discovery of depleted
aquifers, initial discovery of building structures on areas that
are subsiding, and locating particular types of human activ-
ity (e.g., mining activities and plowing activities). Platform
1202 can be configured to generate alerts whenever results
of process 5700 indicate, e.g., previously unknown surface
deformation has been detected.

Another use of results of process 5700 is in estimating
errors in digital elevation models. As discussed above,
analytic techniques used to identify the contribution to the
unwrapped phase from offset satellite positions use elevation
information to make this correction (e.g., from a DEM). If
consistency checks performed during process 5700 fail,
inferences can be made about where and how the elevation
information is incorrect. Further, as with phase contribution
from orbital offsets, phase change due to tropospheric mois-
ture has a signature. If one can unwrap effectively, one can
use InSAR to estimate tropospheric moisture, which can be
useful for vetting weather models and more generally under-
standing climate.

An example control script for managing portions of
process 5700 is depicted in FIG. 58. A prerequisite for script
5800 is that all of the SLCs have been organized into stacks.
Unless where otherwise specified, messages are published to
the topic associated with the pool of medium nodes. Various
elements of script 5800 are discussed as follows.

A message is published to create a DEM in the satellite’s
frame of reference for the stack in question. When this task
completes, the DEM is written back to storage 1212. For
each of the three swaths in the stack, a message is published
to perform an analysis of the stack of collections. This
analysis includes looking at orbit files to record the spatial
offset of the satellites, as well as gathering parameters on the
collection. Some data is per collection, and some is per
interferogram (pair of collections). When the task com-
pletes, the output of these analyses (baseline_table.dat, base-
line_select.dat, intf.in, data_sm_swath.in) is written to stor-
age 1212. Next, for each of the three swaths in the stack, a
message is published for a task that depends on there being
a DEM in storage 1212, and when run, will generate a new
DEM in the satellites range/azimuth coordinate system. A
script called register_slc.sh is run locally. The script creates
a long list of Pub Sub messages (as it is faster to submit a
group of Pub Sub messages all at once rather than submitting
them one at a time) corresponding to registration tasks.
Registration is the process of making sure that all the
collections within a swath for a certain stack line up with a
specified collection called a master. Then, for each swath in
the stack, wait until intf.in (the list of interferograms to be
created) and topo_ra.grd (the topographic data in range/
azimuth coordinates have been written to storage 1212.

Next, intf.sh is run locally. This script will, for every
interferogram to be created, dispatch Pub Sub messages with
the following tasks:

a. Create the desired interferogram. This requires that the
two registered collections be available as well as the topo-
graphic data in range/azimuth coordinates. This writes phase
and coherence for the interferogram back to storage 1212.

b. Unwrap the phase that is produced by the above
process. This task depends on the phase and coherence data
being in storage 1212.

c. Convert phase, coherence, and unwrapped phase from
range/azimuth coordinates to lat/lon.

Next, status.py is called, which indicates that the creation
of the phase for all the interferograms has been completed.
Then, a message is dispatched to the pool of large nodes that
runs a time series analysis called SBAS. SBAS is a program
that uses the unwrapped phases from the interferograms in
the stack to create a time resolved measure of deformation,
tropospheric water moisture, and a one time correction to the
DEM which gets uploaded to storage 1212.

Although the foregoing embodiments have been
described in some detail for purposes of clarity of under-
standing, the invention is not limited to the details provided.
There are many alternative ways of implementing the inven-
tion. The disclosed embodiments are illustrative and not
restrictive.

What is claimed is:
1. A system, comprising:
a processor configured to:

receive a pair of images comprising a first image and a
second image, wherein the first image and the second
image comprise synthetic aperture radar imagery,
wherein the first image and the second image are
coregistered and wherein the first image and the
second image comprise respective phase data;

generate an unwrapped interferogram for the pair of
images including by solving an optimization prob-
lem using a nonconvex penalty function, wherein the
nonconvex penalty function has an explicit proximal
mapping; and

use the unwrapped interferogram, at least in part, to
detect a deformation; and

a memory coupled to the processor and configured to
provide the processor with instructions.

2. The system of claim 1 wherein application of the
penalty function results in a sparse difference between an
estimated gradient and a gradient of an estimated unwrapped
phase.

3. The system of claim 1 wherein the processor is further
configured to generate a wrapped differential interferogram
that includes per pixel phase differences between pixels
appearing in both the first image and the second image.

4. The system of claim 1 wherein the processor is further
configured to detect a subsidence at least in part by using the
unwrapped interferogram.

5. The system of claim 1 wherein the processor is further
configured to detect mining activity at least in part by using
the unwrapped interferogram.

6. The system of claim 1 wherein the processor is further
configured to detect plowing activity at least in part by using
the unwrapped interferogram.

7. The system of claim 1 wherein the processor is further
configured to coregister the first image and the second
image.

8. A method, comprising:
receiving a pair of images comprising a first image and a

second image, wherein the first image and the second
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image comprise synthetic aperture radar imagery,
wherein the first image and the second image are
coregistered and wherein the first image and the second
image comprise respective phase data;

generating an unwrapped interferogram for the pair of
images including by solving an optimization problem
using a nonconvex penalty function, wherein the non-
convex penalty function has an explicit proximal map-
ping; and

using the unwrapped interferogram, at least in part, to
detect a deformation.

9. The method of claim 8 wherein application of the
penalty function results in a sparse difference between an
estimated gradient and a gradient of an estimated unwrapped
phase.

10. The method of claim 8 further comprising generating
a wrapped differential interferogram that includes per pixel
phase differences between pixels appearing in both the first
image and the second image.

11. The method of claim 8, wherein detecting the defor-
mation includes detecting a subsidence.

12. The method of claim 8, wherein detecting the defor-
mation includes detecting mining activity.

13. The method of claim 8, wherein detecting the defor-
mation includes detecting plowing activity.

14. The method of claim 8 further comprising coregister-
ing the first and the second image.

15. A computer program product embodied in a non-
transitory computer readable storage medium and compris-
ing instructions which, when executed, cause a computer to:

receive a pair of images comprising a first image and a
second image, wherein the first image and the second
image comprise synthetic aperture radar imagery,
wherein the first image and the second image are
coregistered and wherein the first image and the second
image comprise respective phase data;

generate an unwrapped interferogram for the pair of
images including by solving an optimization problem

using a nonconvex penalty function, wherein the non-
convex penalty function has an explicit proximal map-
ping; and

use the unwrapped interferogram, at least in part, to detect
a deformation.

16. The system of claim 1, wherein the proximal mapping
is defined as follows:

proximal λG(x)=arg minyG(y)+\y−x\2
2/(2λ)=

max{ x−λ2−pxp−1,0} x/?x?,

wherein the value of p is less than one, G is the nonconvex
penalty function, x and y are real number value vari-
ables, lambda is a positive number value parameter,
G(x) is the value of the function G applied to the
variable x, and G(y) is the value of the function G
applied to the variable y.

17. The method of claim wherein the proximal mapping
is defined as follows:

proximal λG(x)=arg minyG(y)+\y−x\2
2/(2λ)=

max{ x−λ2−pxp−1,0} x/?x?,

wherein the value of p is less than one, G is the nonconvex
penalty function, x and y are real number value vari-
ables, lambda is a positive number value parameter,
G(x) is the value of the function G applied to the
variable x, and G(y) is the value of the function G
applied to the variable y.

18. The computer program product of claim 15, wherein
the proximal mapping is defined as follows:

proximal λG(x)=arg minyG(y)+\y−x\2
2/(2λ)=

max{ x−λ2−pxp−1,0} x/?x?,

wherein the value of p is less than one, G is the nonconvex
penalty function, x and y are real number value vari-
ables, lambda is a positive number value parameter,
G(x) is the value of the function G applied to the
variable x, and G(y) is the value of the function G
applied to the variable y.

∗ ∗ ∗ ∗ ∗
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